論文の概要: Search-Based Robot Motion Planning With Distance-Based Adaptive Motion Primitives
- arxiv url: http://arxiv.org/abs/2507.01198v1
- Date: Tue, 01 Jul 2025 21:33:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.936088
- Title: Search-Based Robot Motion Planning With Distance-Based Adaptive Motion Primitives
- Title(参考訳): 距離に基づく適応型モーションプリミティブを用いた探索型ロボット動作計画
- Authors: Benjamin Kraljusic, Zlatan Ajanovic, Nermin Covic, Bakir Lacevic,
- Abstract要約: 本研究では,サンプリングベースと探索ベースを組み合わせたロボットマニピュレータの動作計画アルゴリズムを提案する。
提案手法の中核となる貢献は、適応運動プリミティブとして自由構成空間(C空間)のバーの利用である。
以上の結果から, bur-based アプローチは複雑なシナリオにおいて, 固定原始的計画よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 1.8874301050354767
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This work proposes a motion planning algorithm for robotic manipulators that combines sampling-based and search-based planning methods. The core contribution of the proposed approach is the usage of burs of free configuration space (C-space) as adaptive motion primitives within the graph search algorithm. Due to their feature to adaptively expand in free C-space, burs enable more efficient exploration of the configuration space compared to fixed-sized motion primitives, significantly reducing the time to find a valid path and the number of required expansions. The algorithm is implemented within the existing SMPL (Search-Based Motion Planning Library) library and evaluated through a series of different scenarios involving manipulators with varying number of degrees-of-freedom (DoF) and environment complexity. Results demonstrate that the bur-based approach outperforms fixed-primitive planning in complex scenarios, particularly for high DoF manipulators, while achieving comparable performance in simpler scenarios.
- Abstract(参考訳): 本研究では,サンプリングベースと探索ベースを組み合わせたロボットマニピュレータの動作計画アルゴリズムを提案する。
提案手法のコアコントリビューションは,グラフ探索アルゴリズムにおける適応運動プリミティブとして自由構成空間(C空間)のバーを用いることである。
自由なC空間で適応的に拡張する特徴のため、バーは固定サイズの運動プリミティブよりも構成空間のより効率的な探索を可能にし、有効な経路を見つける時間と必要な拡張数を大幅に削減する。
このアルゴリズムは既存のSMPL (Search-Based Motion Planning Library) ライブラリ内に実装され、様々な数の自由度(DoF)を持つマニピュレータと環境複雑さを含む一連のシナリオを通じて評価される。
その結果、burベースのアプローチは、複雑なシナリオ、特に高いDoFマニピュレータにおいて、より単純なシナリオで同等のパフォーマンスを達成しながら、固定プライミティブな計画よりも優れていることが示された。
関連論文リスト
- LOP: Learning Optimal Pruning for Efficient On-Demand MLLMs Scaling [52.1366057696919]
LOPは、ターゲットプルーニング制約から最適なプルーニング戦略を学ぶ、効率的なニューラルプルーニングフレームワークである。
LOPアプローチでは、自動回帰ニューラルネットワーク(NN)を使用して、ターゲットプルーニング制約に適応したレイヤワイズプルーニング戦略を直接予測する。
実験の結果,LOPは最大3桁のスピードアップを達成しつつ,様々な測定値において最先端のプルーニング手法よりも優れていた。
論文 参考訳(メタデータ) (2025-06-15T12:14:16Z) - A Hybrid Evolutionary Approach for Multi Robot Coordinated Planning at Intersections [0.0]
交差点での協調型マルチロボット運動計画は、道路、工場、倉庫における安全な移動の鍵となる。
本稿では,パラメトリック格子構造と離散的RRTを用いた新しい進化的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-12-02T03:40:04Z) - Enhancing Zeroth-order Fine-tuning for Language Models with Low-rank Structures [21.18741772731095]
ゼロ階数(ZO)アルゴリズムは、関数値の有限差を用いて勾配を近似することで、有望な代替手段を提供する。
既存のZO法は、LLM微調整で一般的な低ランク勾配構造を捉えるのに苦労し、準最適性能をもたらす。
本稿では,LLMにおけるこの構造を効果的に捕捉する低ランクZOアルゴリズム(LOZO)を提案する。
論文 参考訳(メタデータ) (2024-10-10T08:10:53Z) - Accelerating Search-Based Planning for Multi-Robot Manipulation by Leveraging Online-Generated Experiences [20.879194337982803]
MAPF(Multi-Agent Path-Finding)アルゴリズムは、離散的な2Dドメインで保証され、厳密な保証を提供する。
本稿では,その反復的かつ漸進的な性質を活用して,競合に基づく探索アルゴリズムを高速化する手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T20:31:07Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
我々は,エージェントが訓練中に学習する抽象的な検索空間において,エージェントが計画することを可能にする,PiZeroと呼ばれる新しい手法を提案する。
本研究では,旅行セールスマン問題,ソコバン問題,2048年,施設立地問題,パックマン問題など,複数の分野で評価を行った。
論文 参考訳(メタデータ) (2023-08-16T22:47:16Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - Memetic algorithms for Spatial Partitioning problems [26.73720392872553]
本稿では,実世界のデータセットにおける空間分割という,特定のタイプのSOPに焦点を当てる。
我々は,Swarm-based spatial memetic algorithm (SPATIAL) と呼ばれる単純だが効果的なアルゴリズムを提案し,それを校内限定問題(restricting problem)で検証した。
論文 参考訳(メタデータ) (2022-08-04T20:05:46Z) - Learning Space Partitions for Path Planning [54.475949279050596]
PlaLaMは2次元ナビゲーションタスクにおける既存の経路計画手法よりも優れており、特に難解な局所最適化の存在下では優れている。
これらは高マルチモーダルな実世界のタスクに移行し、コンパイラフェーズでは最大245%、分子設計では最大0.4の強いベースラインを0-1スケールで上回ります。
論文 参考訳(メタデータ) (2021-06-19T18:06:11Z) - Goal Kernel Planning: Linearly-Solvable Non-Markovian Policies for Logical Tasks with Goal-Conditioned Options [54.40780660868349]
我々はLinearly-Solvable Goal Kernel Dynamic Programming (LS-GKDP)と呼ばれる合成フレームワークを導入する。
LS-GKDPは、Linearly-Solvable Markov Decision Process (LMDP)形式とOptions Framework of Reinforcement Learningを組み合わせたものである。
本稿では,目標カーネルを持つLMDPが,タスク接地によって定義された低次元部分空間におけるメタポリティシの効率的な最適化を実現する方法を示す。
論文 参考訳(メタデータ) (2020-07-06T05:13:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。