論文の概要: VERA: Explainable Video Anomaly Detection via Verbalized Learning of Vision-Language Models
- arxiv url: http://arxiv.org/abs/2412.01095v1
- Date: Mon, 02 Dec 2024 04:10:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:51:14.976058
- Title: VERA: Explainable Video Anomaly Detection via Verbalized Learning of Vision-Language Models
- Title(参考訳): VERA:視覚言語モデルの言語学習による説明可能なビデオ異常検出
- Authors: Muchao Ye, Weiyang Liu, Pan He,
- Abstract要約: 本稿では、視覚言語モデルによるビデオ異常検出を可能にするVERAという言語学習フレームワークを提案する。
VERAは、VADに必要な複雑な推論を、よりシンプルでより焦点を絞った質問のリフレクションに分解する。
推論中、VERAは学習した質問をモデルプロンプトに埋め込んで、セグメントレベルの異常スコアを生成するVLMをガイドする。
- 参考スコア(独自算出の注目度): 20.92507667350599
- License:
- Abstract: The rapid advancement of vision-language models (VLMs) has established a new paradigm in video anomaly detection (VAD): leveraging VLMs to simultaneously detect anomalies and provide comprehendible explanations for the decisions. Existing work in this direction often assumes the complex reasoning required for VAD exceeds the capabilities of pretrained VLMs. Consequently, these approaches either incorporate specialized reasoning modules during inference or rely on instruction tuning datasets through additional training to adapt VLMs for VAD. However, such strategies often incur substantial computational costs or data annotation overhead. To address these challenges in explainable VAD, we introduce a verbalized learning framework named VERA that enables VLMs to perform VAD without model parameter modifications. Specifically, VERA automatically decomposes the complex reasoning required for VAD into reflections on simpler, more focused guiding questions capturing distinct abnormal patterns. It treats these reflective questions as learnable parameters and optimizes them through data-driven verbal interactions between learner and optimizer VLMs, using coarsely labeled training data. During inference, VERA embeds the learned questions into model prompts to guide VLMs in generating segment-level anomaly scores, which are then refined into frame-level scores via the fusion of scene and temporal contexts. Experimental results on challenging benchmarks demonstrate that the learned questions of VERA are highly adaptable, significantly improving both detection performance and explainability of VLMs for VAD.
- Abstract(参考訳): 視覚言語モデル(VLM)の急速な進歩は,ビデオ異常検出(VAD)において新たなパラダイムを確立している。
この方向の既存の作業は、VADに必要な複雑な推論が、事前訓練されたVLMの能力を超えると仮定することが多い。
したがって、これらのアプローチは推論中に特別な推論モジュールを組み込んだり、VLMをVADに適応させるための追加トレーニングを通じて、命令チューニングデータセットに依存する。
しかし、そのような戦略はしばしば計算コストやデータアノテーションのオーバーヘッドを引き起こす。
説明可能なVADにおけるこれらの課題に対処するために、VLMがモデルパラメータを変更せずにVADを実行することができるVERAという言語学習フレームワークを導入する。
具体的には、VERAは、VADに必要な複雑な推論を、より単純でより焦点を絞った質問に自動的に分解する。
これらの反射的質問を学習可能なパラメータとして扱い、粗いラベル付きトレーニングデータを用いて学習者と最適化者のVLM間のデータ駆動型言語相互作用を通じて最適化する。
推論中、VERAは学習した質問をモデルプロンプトに埋め込んで、セグメントレベルの異常スコアを生成するVLMをガイドし、シーンと時間コンテキストの融合を通じてフレームレベルのスコアに洗練する。
挑戦的なベンチマーク実験の結果、VERAの学習された質問は高い適応性を示し、VAD用VLMの検出性能と説明性の両方を著しく改善した。
関連論文リスト
- Vision Language Models are In-Context Value Learners [89.29486557646624]
本稿では、視覚言語モデル(VLM)に埋め込まれた世界的知識を活用してタスクの進捗を予測する普遍的価値関数推定器である生成価値学習(GVL)を提案する。
ロボットやタスク固有のトレーニングがなければ、GVLは300以上の異なる現実世界のタスクに対して、ゼロショットと数ショットの効果的な値をインコンテキストで予測することができる。
論文 参考訳(メタデータ) (2024-11-07T09:17:50Z) - EZ-HOI: VLM Adaptation via Guided Prompt Learning for Zero-Shot HOI Detection [21.091101582856183]
本稿では,効率的なゼロショットHOI検出(EZ-HOI)のための新しい学習フレームワークを提案する。
まず、学習可能なプロンプトに対してLarge Language Model(LLM)とVLMガイダンスを導入し、詳細なHOI記述と視覚的セマンティクスを統合して、VLMをHOIタスクに適用する。
我々は,既存の手法と比較して,トレーニング可能なパラメータの10.35%から33.95%しか持たない,さまざまなゼロショット設定における最先端性能を実現していることを示す。
論文 参考訳(メタデータ) (2024-10-31T13:06:29Z) - AutoBench-V: Can Large Vision-Language Models Benchmark Themselves? [55.14033256706175]
視覚・言語情報の統合を促進するためには,LVLM(Large Vision-Language Models)が不可欠である。
本稿では,需要評価のための自動フレームワークであるAutoBench-Vを紹介する。
5つの要求されたユーザ入力にまたがる7つのLVLMの広範な評価を通じて、このフレームワークの有効性と信頼性を示す。
論文 参考訳(メタデータ) (2024-10-28T17:55:08Z) - MarvelOVD: Marrying Object Recognition and Vision-Language Models for Robust Open-Vocabulary Object Detection [107.15164718585666]
開語彙検出コンテキスト下でのVLMの偏り予測の根本原因について検討した。
私たちの観察は、非常に優れたトレーニングターゲットを生成する、単純で効果的なパラダイム、コード化されたMarvelOVDにつながります。
我々の手法は、他の最先端技術よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2024-07-31T09:23:57Z) - Mutual Learning for Acoustic Matching and Dereverberation via Visual Scene-driven Diffusion [93.32354378820648]
本稿では拡散モデルに基づく相互学習フレームワークMVSDを紹介する。
MVSDは2つのタスクを対称的に考慮し、逆タスクからの学習を容易にするために相互関係を利用する。
我々のフレームワークは、残響器と残響器の性能を向上させることができる。
論文 参考訳(メタデータ) (2024-07-15T00:47:56Z) - Losing Visual Needles in Image Haystacks: Vision Language Models are Easily Distracted in Short and Long Contexts [65.04791072532106]
視覚言語モデル(VLM)における長文抽出推論評価のためのベンチマークジェネレータであるLoCoVQAを提案する。
LoCoVQAは、数学的推論、VQA、そしてより長い視覚的コンテキストを持つ文字認識タスクのテスト例を拡張している。
このテストは、VLMがクエリに応答する際の無関係な情報をどの程度無視できるかを評価する。
論文 参考訳(メタデータ) (2024-06-24T17:58:03Z) - CIEM: Contrastive Instruction Evaluation Method for Better Instruction
Tuning [8.217445461627797]
VLM(Vision-Language Models)は、下流のアプリケーションで、例えば存在しないエンティティをキャプションするときに、誤った知覚情報を生成する。
幻覚現象に対処するため,CIEM(Contrastive Instruction Evaluation Method)とCIT(Contrastive Instruction Tuning)を導入する。
既存のVLMに共通する幻覚問題,幻覚現象に対処する現在の指導訓練データセットの障害,およびCIEMおよび公開データセットよりもCIT調整VLMの方が優れていることを指摘する。
論文 参考訳(メタデータ) (2023-09-05T15:06:37Z) - Benchmarking Zero-Shot Recognition with Vision-Language Models: Challenges on Granularity and Specificity [45.86789047206224]
本稿では,ゼロショット認識における視覚言語モデル(VLM)の評価のための新しいベンチマークを提案する。
我々のベンチマークは、意味的粒度レベルにおける概念理解におけるVLMの一貫性と、テキストの特異性に対する応答を検証した。
発見によると、VLMは微粒な概念を適度に好み、特異性に苦しむ。
論文 参考訳(メタデータ) (2023-06-28T09:29:06Z) - Investigating Prompting Techniques for Zero- and Few-Shot Visual
Question Answering [7.640416680391081]
本稿では,ゼロおよび少数ショットの視覚質問応答(VQA)性能を向上させる効果的なプロンプト手法について検討する。
特定のテンプレートがVQAの結果に大きく影響し,戦略的テンプレート選択の必要性が強調される。
自由形式のオープンエンドVQA応答を評価する際の課題を軽減するために,簡単なLCM誘導前処理技術を導入する。
論文 参考訳(メタデータ) (2023-06-16T17:47:57Z) - Adapting Pre-trained Language Models to Vision-Language Tasks via
Dynamic Visual Prompting [83.21164539349273]
事前学習型言語モデル (PLM) はマルチメディア研究においてその役割を担っている。
本稿では,視覚言語推論タスクのスタンドアロンモデルとしてのPLMの探索に焦点をあてる。
ダイナミックビジュアル・プロンプティング(DVP)と呼ばれるPLMのための新しいトランスファー学習手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T07:19:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。