論文の概要: Vad-R1: Towards Video Anomaly Reasoning via Perception-to-Cognition Chain-of-Thought
- arxiv url: http://arxiv.org/abs/2505.19877v1
- Date: Mon, 26 May 2025 12:05:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.404892
- Title: Vad-R1: Towards Video Anomaly Reasoning via Perception-to-Cognition Chain-of-Thought
- Title(参考訳): Vad-R1:知覚と認識の連鎖によるビデオ異常推論を目指して
- Authors: Chao Huang, Benfeng Wang, Jie Wen, Chengliang Liu, Wei Wang, Li Shen, Xiaochun Cao,
- Abstract要約: Vad-R1は、ビデオ異常推論のためのエンドツーエンドのMLLMベースのフレームワークである。
我々は、異常を認識する人間の過程をシミュレートするパーセプション・トゥ・コグニション・チェーン・オブ・ワット(P2C-CoT)を設計する。
また,MLLMの異常推論能力を明示的に動機付ける改良型強化学習アルゴリズムAVA-GRPOを提案する。
- 参考スコア(独自算出の注目度): 58.321044666612174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in reasoning capability of Multimodal Large Language Models (MLLMs) demonstrate its effectiveness in tackling complex visual tasks. However, existing MLLM-based Video Anomaly Detection (VAD) methods remain limited to shallow anomaly descriptions without deep reasoning. In this paper, we propose a new task named Video Anomaly Reasoning (VAR), which aims to enable deep analysis and understanding of anomalies in the video by requiring MLLMs to think explicitly before answering. To this end, we propose Vad-R1, an end-to-end MLLM-based framework for VAR. Specifically, we design a Perception-to-Cognition Chain-of-Thought (P2C-CoT) that simulates the human process of recognizing anomalies, guiding the MLLM to reason anomaly step-by-step. Based on the structured P2C-CoT, we construct Vad-Reasoning, a dedicated dataset for VAR. Furthermore, we propose an improved reinforcement learning algorithm AVA-GRPO, which explicitly incentivizes the anomaly reasoning capability of MLLMs through a self-verification mechanism with limited annotations. Experimental results demonstrate that Vad-R1 achieves superior performance, outperforming both open-source and proprietary models on VAD and VAR tasks. Codes and datasets will be released at https://github.com/wbfwonderful/Vad-R1.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)の推論能力の最近の進歩は、複雑な視覚的タスクに対処する上での有効性を示している。
しかし、既存のMLLMベースのビデオ異常検出(VAD)法は、深い推論なしに浅い異常記述に限られている。
本稿では,ビデオ異常推論(VAR, Video Anomaly Reasoning)という新しいタスクを提案する。
そこで我々は,VARのためのエンドツーエンドMLLMベースのフレームワークであるVad-R1を提案する。
具体的には,P2C-CoT (Perception-to-Cognition Chain-of-Thought) を設計する。
構造化されたP2C-CoTに基づいて,Vad-Reasoningという,VAR専用のデータセットを構築した。
さらに,アノテーションを限定した自己検証機構により,MLLMの異常推論能力を明示的に動機付ける改良された強化学習アルゴリズムAVA-GRPOを提案する。
実験結果から,Vad-R1は,VADタスクとVARタスクにおいて,オープンソースモデルとプロプライエタリモデルの両方よりも優れた性能を発揮することが示された。
コードとデータセットはhttps://github.com/wbfwonderful/Vad-R1.comで公開される。
関連論文リスト
- AnomalyR1: A GRPO-based End-to-end MLLM for Industrial Anomaly Detection [40.34270276536052]
産業異常検出(IAD)は、欠陥サンプルの不足により深刻な課題となる。
従来のアプローチは、手作りの機能やドメイン固有のエキスパートモデルによって制約されることが多いが、この制限に対処するのに苦労している。
本稿では,マルチモーダル大規模言語モデル(MLLM)であるVLM-R1を活用する先駆的フレームワークであるAnomalyR1を紹介する。
論文 参考訳(メタデータ) (2025-04-16T09:48:41Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
ビデオ理解におけるMLLMのポストトレーニング手法を評価するためのベンチマークであるSEED-Bench-R1を紹介する。
複雑な現実世界のビデオや、複数の質問の形式での複雑な日常的な計画タスクも含んでいる。
Qwen2-VL-Instruct-7Bをベースモデルとして、RLと教師付き微調整(SFT)を比較した。
我々の詳細な分析では、RLは視覚知覚を増強するが、しばしばコヒーレント推論連鎖を減少させる。
論文 参考訳(メタデータ) (2025-03-31T17:55:23Z) - AssistPDA: An Online Video Surveillance Assistant for Video Anomaly Prediction, Detection, and Analysis [52.261173507177396]
AssistPDAは,Anomaly Prediction, Detection and Analysis (VAPDA) を単一のフレームワークに統合した,初のオンラインビデオ異常監視アシスタントである。
AssistPDAは、インタラクティブなユーザエンゲージメントをサポートしながら、ストリーミングビデオのリアルタイム推論を可能にする。
また,新しい事象レベルの異常予測タスクを導入し,異常が完全に展開される前に前向きな異常予測を可能にする。
論文 参考訳(メタデータ) (2025-03-27T18:30:47Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
MLLM(Multimodal Large Language Models)は、視覚情報とテキスト情報を統合するための強力なツールとなっている。
本稿では,MLLMの知覚的理解と抽象的関係推論を評価するためのベンチマークVOILAを紹介する。
我々は,現在のMLLMが画像間関係の理解に苦慮し,高レベルの関係推論において限られた能力を示すことを明らかにした。
論文 参考訳(メタデータ) (2025-02-25T23:36:19Z) - Multi-Objective Large Language Model Unlearning [3.372396620898397]
グラディエント・アセント(GA)は、対象データ上のモデルの予測確率を減少させるプロアクティブな方法である。
本稿では,多目的大規模言語モデル学習(MOLLM)アルゴリズムを提案する。
実験の結果,MLLM が SOTA GA をベースとした LLM アンラーニング法よりも非ラーニング効果とモデルユーティリティ保存の点で優れていたことが確認された。
論文 参考訳(メタデータ) (2024-12-29T09:35:56Z) - mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
マルチモーダル検索拡張生成(mRAG)はMLLMに包括的で最新の知識を提供するために自然に導入されている。
我々は、適応的検索と有用な情報ローカライゼーションを実現する textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) という新しいフレームワークを提案する。
mR$2$AG は INFOSEEK と Encyclopedic-VQA の最先端MLLM を著しく上回る
論文 参考訳(メタデータ) (2024-11-22T16:15:50Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。