LoyalDiffusion: A Diffusion Model Guarding Against Data Replication
- URL: http://arxiv.org/abs/2412.01118v1
- Date: Mon, 02 Dec 2024 04:41:30 GMT
- Title: LoyalDiffusion: A Diffusion Model Guarding Against Data Replication
- Authors: Chenghao Li, Yuke Zhang, Dake Chen, Jingqi Xu, Peter A. Beerel,
- Abstract summary: Diffusion models can replicate training data, particularly when the training data includes confidential information.
We propose a replication-aware U-Net architecture that incorporates information transfer blocks into skip connections that are less essential for image quality.
Experiments demonstrate that LoyalDiffusion outperforms the state-of-the-art replication mitigation method achieving a 48.63% reduction in replication while maintaining comparable image quality.
- Score: 6.818344768093927
- License:
- Abstract: Diffusion models have demonstrated significant potential in image generation. However, their ability to replicate training data presents a privacy risk, particularly when the training data includes confidential information. Existing mitigation strategies primarily focus on augmenting the training dataset, leaving the impact of diffusion model architecture under explored. In this paper, we address this gap by examining and mitigating the impact of the model structure, specifically the skip connections in the diffusion model's U-Net model. We first present our observation on a trade-off in the skip connections. While they enhance image generation quality, they also reinforce the memorization of training data, increasing the risk of replication. To address this, we propose a replication-aware U-Net (RAU-Net) architecture that incorporates information transfer blocks into skip connections that are less essential for image quality. Recognizing the potential impact of RAU-Net on generation quality, we further investigate and identify specific timesteps during which the impact on memorization is most pronounced. By applying RAU-Net selectively at these critical timesteps, we couple our novel diffusion model with a targeted training and inference strategy, forming a framework we refer to as LoyalDiffusion. Extensive experiments demonstrate that LoyalDiffusion outperforms the state-of-the-art replication mitigation method achieving a 48.63% reduction in replication while maintaining comparable image quality.
Related papers
- Redistribute Ensemble Training for Mitigating Memorization in Diffusion Models [31.92526915009259]
Diffusion models are known for their tremendous ability to generate high-quality samples.
Recent methods for memory mitigation have primarily addressed the issue within the context of the text modality.
We propose a novel method for diffusion models from the perspective of visual modality, which is more generic and fundamental for mitigating memorization.
arXiv Detail & Related papers (2025-02-13T15:56:44Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Iterative Ensemble Training with Anti-Gradient Control for Mitigating Memorization in Diffusion Models [20.550324116099357]
Diffusion models are known for their tremendous ability to generate novel and high-quality samples.
Recent approaches for memory mitigation either only focused on the text modality problem in cross-modal generation tasks or utilized data augmentation strategies.
We propose a novel training framework for diffusion models from the perspective of visual modality, which is more generic and fundamental for mitigating memorization.
arXiv Detail & Related papers (2024-07-22T02:19:30Z) - Gradient Inversion of Federated Diffusion Models [4.1355611383748005]
Diffusion models are becoming defector generative models, which generate exceptionally high-resolution image data.
In this paper, we study the privacy risk of gradient inversion attacks.
We propose a triple-optimization GIDM+ that coordinates the optimization of the unknown data.
arXiv Detail & Related papers (2024-05-30T18:00:03Z) - Data-Free Federated Class Incremental Learning with Diffusion-Based Generative Memory [27.651921957220004]
We introduce a novel data-free federated class incremental learning framework with diffusion-based generative memory (DFedDGM)
We design a new balanced sampler to help train the diffusion models to alleviate the common non-IID problem in FL.
We also introduce an entropy-based sample filtering technique from an information theory perspective to enhance the quality of generative samples.
arXiv Detail & Related papers (2024-05-22T20:59:18Z) - Unveiling and Mitigating Memorization in Text-to-image Diffusion Models through Cross Attention [62.671435607043875]
Research indicates that text-to-image diffusion models replicate images from their training data, raising tremendous concerns about potential copyright infringement and privacy risks.
We reveal that during memorization, the cross-attention tends to focus disproportionately on the embeddings of specific tokens.
We introduce an innovative approach to detect and mitigate memorization in diffusion models.
arXiv Detail & Related papers (2024-03-17T01:27:00Z) - Understanding and Mitigating Copying in Diffusion Models [53.03978584040557]
Images generated by diffusion models like Stable Diffusion are increasingly widespread.
Recent works and even lawsuits have shown that these models are prone to replicating their training data, unbeknownst to the user.
arXiv Detail & Related papers (2023-05-31T17:58:02Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Data Forensics in Diffusion Models: A Systematic Analysis of Membership
Privacy [62.16582309504159]
We develop a systematic analysis of membership inference attacks on diffusion models and propose novel attack methods tailored to each attack scenario.
Our approach exploits easily obtainable quantities and is highly effective, achieving near-perfect attack performance (>0.9 AUCROC) in realistic scenarios.
arXiv Detail & Related papers (2023-02-15T17:37:49Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.