SUICA: Learning Super-high Dimensional Sparse Implicit Neural Representations for Spatial Transcriptomics
- URL: http://arxiv.org/abs/2412.01124v1
- Date: Mon, 02 Dec 2024 05:02:18 GMT
- Title: SUICA: Learning Super-high Dimensional Sparse Implicit Neural Representations for Spatial Transcriptomics
- Authors: Qingtian Zhu, Yumin Zheng, Yuling Sang, Yifan Zhan, Ziyan Zhu, Jun Ding, Yinqiang Zheng,
- Abstract summary: Spatial Transcriptomics (ST) is a method that captures spatial gene expression profiles within histological sections.
In this paper, we model ST in a continuous and compact manner by the proposed tool, SUICA.
We incorporate a graph-augmented Autoencoder to effectively model the context information of the unstructured spots.
- Score: 23.396154129613528
- License:
- Abstract: Spatial Transcriptomics (ST) is a method that captures spatial gene expression profiles within histological sections. The discrete spatial distribution and the super-high dimensional sequencing results make ST data challenging to be modeled effectively. In this paper, we manage to model ST in a continuous and compact manner by the proposed tool, SUICA, empowered by the great approximation capability of Implicit Neural Representations (INRs) that can improve both the spatial resolution and the gene expression. Concretely within the proposed SUICA, we incorporate a graph-augmented Autoencoder to effectively model the context information of the unstructured spots and provide informative embeddings that are structure-aware for spatial mapping. We also tackle the extremely skewed distribution in a regression-by-classification fashion and enforce classification-based loss functions for the optimization of SUICA. By extensive experiments of a wide range of common ST platforms, SUICA outperforms both conventional INR variants and SOTA methods for ST super-resolution regarding numerical fidelity, statistical correlation, and bio-conservation. The prediction by SUICA also showcases amplified gene signatures that enriches the bio-conservation of the raw data and benefits subsequent analysis. The code is available at https://github.com/Szym29/SUICA.
Related papers
- SpaDiT: Diffusion Transformer for Spatial Gene Expression Prediction using scRNA-seq [9.624390863643109]
SpaDiT is a deep learning method that integrates scRNA-seq and ST data for the prediction of undetected genes.
We have demonstrated the effectiveness of SpaDiT through extensive experiments on both seq-based and image-based ST data.
arXiv Detail & Related papers (2024-07-18T05:40:50Z) - Multimodal contrastive learning for spatial gene expression prediction using histology images [13.47034080678041]
We propose textbfmclSTExp, a multimodal contrastive learning with Transformer and Densenet-121 encoder for Spatial Transcriptomics Expression prediction.
textbfmclSTExp has superior performance in predicting spatial gene expression.
It has shown promise in interpreting cancer-specific overexpressed genes, elucidating immune-related genes, and identifying specialized spatial domains annotated by pathologists.
arXiv Detail & Related papers (2024-07-11T06:33:38Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
We introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images.
Our approach fuses image and textual data to enhance the generation process.
We achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
arXiv Detail & Related papers (2023-09-01T22:08:32Z) - Modelling Technical and Biological Effects in scRNA-seq data with
Scalable GPLVMs [6.708052194104378]
We extend a popular approach for probabilistic non-linear dimensionality reduction, the Gaussian process latent variable model, to scale to massive single-cell datasets.
The key idea is to use an augmented kernel which preserves the factorisability of the lower bound allowing for fast variational inference.
arXiv Detail & Related papers (2022-09-14T15:25:15Z) - Spatial machine-learning model diagnostics: a model-agnostic
distance-based approach [91.62936410696409]
This contribution proposes spatial prediction error profiles (SPEPs) and spatial variable importance profiles (SVIPs) as novel model-agnostic assessment and interpretation tools.
The SPEPs and SVIPs of geostatistical methods, linear models, random forest, and hybrid algorithms show striking differences and also relevant similarities.
The novel diagnostic tools enrich the toolkit of spatial data science, and may improve ML model interpretation, selection, and design.
arXiv Detail & Related papers (2021-11-13T01:50:36Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
Generative adversarial networks (GANs) typically require ample data for training in order to synthesize high-fidelity images.
Recent studies have shown that training GANs with limited data remains formidable due to discriminator overfitting.
This paper introduces a novel strategy called Adaptive Pseudo Augmentation (APA) to encourage healthy competition between the generator and the discriminator.
arXiv Detail & Related papers (2021-11-12T18:13:45Z) - A Feature Fusion-Net Using Deep Spatial Context Encoder and
Nonstationary Joint Statistical Model for High Resolution SAR Image
Classification [10.152675581771113]
A novel end-to-end supervised classification method is proposed for HR SAR images.
To extract more effective spatial features, a new deep spatial context encoder network (DSCEN) is proposed.
To enhance the diversity of statistics, the nonstationary joint statistical model (NS-JSM) is adopted to form the global statistical features.
arXiv Detail & Related papers (2021-05-11T06:20:14Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Joint and Progressive Subspace Analysis (JPSA) with Spatial-Spectral
Manifold Alignment for Semi-Supervised Hyperspectral Dimensionality Reduction [48.73525876467408]
We propose a novel technique for hyperspectral subspace analysis.
The technique is called joint and progressive subspace analysis (JPSA)
Experiments are conducted to demonstrate the superiority and effectiveness of the proposed JPSA on two widely-used hyperspectral datasets.
arXiv Detail & Related papers (2020-09-21T16:29:59Z) - Hierarchical regularization networks for sparsification based learning
on noisy datasets [0.0]
hierarchy follows from approximation spaces identified at successively finer scales.
For promoting model generalization at each scale, we also introduce a novel, projection based penalty operator across multiple dimension.
Results show the performance of the approach as a data reduction and modeling strategy on both synthetic and real datasets.
arXiv Detail & Related papers (2020-06-09T18:32:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.