Variational Graph Contrastive Learning
- URL: http://arxiv.org/abs/2411.07150v1
- Date: Mon, 11 Nov 2024 17:23:07 GMT
- Title: Variational Graph Contrastive Learning
- Authors: Shifeng Xie, Jhony H. Giraldo,
- Abstract summary: Graph representation learning (GRL) is a fundamental task in machine learning, aiming to encode high-dimensional graph-structured data into low-dimensional vectors.
In this work, we propose a novel Subgraph Gaussian Embedding Contrast (SGEC) method.
- Score: 1.9950682531209158
- License:
- Abstract: Graph representation learning (GRL) is a fundamental task in machine learning, aiming to encode high-dimensional graph-structured data into low-dimensional vectors. Self-supervised learning (SSL) methods are widely used in GRL because they can avoid expensive human annotation. In this work, we propose a novel Subgraph Gaussian Embedding Contrast (SGEC) method. Our approach introduces a subgraph Gaussian embedding module, which adaptively maps subgraphs to a structured Gaussian space, ensuring the preservation of graph characteristics while controlling the distribution of generated subgraphs. We employ optimal transport distances, including Wasserstein and Gromov-Wasserstein distances, to effectively measure the similarity between subgraphs, enhancing the robustness of the contrastive learning process. Extensive experiments across multiple benchmarks demonstrate that SGEC outperforms or presents competitive performance against state-of-the-art approaches. Our findings provide insights into the design of SSL methods for GRL, emphasizing the importance of the distribution of the generated contrastive pairs.
Related papers
- Self-Supervised Conditional Distribution Learning on Graphs [15.730933577970687]
We present an end-to-end graph representation learning model to align the conditional distributions of weakly and strongly augmented features over the original features.
This alignment effectively reduces the risk of disrupting intrinsic semantic information through graph-structured data augmentation.
arXiv Detail & Related papers (2024-11-20T07:26:36Z) - LAMP: Learnable Meta-Path Guided Adversarial Contrastive Learning for Heterogeneous Graphs [22.322402072526927]
Heterogeneous Graph Contrastive Learning (HGCL) usually requires pre-defined meta-paths.
textsfLAMP integrates various meta-path sub-graphs into a unified and stable structure.
textsfLAMP significantly outperforms existing state-of-the-art unsupervised models in terms of accuracy and robustness.
arXiv Detail & Related papers (2024-09-10T08:27:39Z) - Refining Latent Representations: A Generative SSL Approach for Heterogeneous Graph Learning [9.686218058331061]
We propose HGVAE, a generative SSL method specially designed for Heterogeneous Graph Learning (HGL)
Instead of focusing on designing complex strategies to capture heterogeneity, HGVAE centers on refining the latent representation.
As a pioneer in applying generative SSL for HGL, HGVAE refines the latent representation, thereby compelling the model to learn high-quality representations.
arXiv Detail & Related papers (2023-10-17T09:34:34Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
We introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL)
In spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
arXiv Detail & Related papers (2022-12-08T23:36:00Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Semi-Supervised Graph Learning Meets Dimensionality Reduction [0.0]
Semi-supervised learning (SSL) has recently received increased attention from machine learning researchers.
In this work, we investigate the use of dimensionality reduction techniques such as PCA, t-SNE, and UMAP to see their effect on the performance of graph neural networks (GNNs)
Our benchmarks and clustering visualizations demonstrate that, under certain conditions, employing a priori and a posteriori dimensionality reduction to GNN inputs and outputs, respectively, can simultaneously improve the effectiveness of semi-supervised node label propagation and node clustering.
arXiv Detail & Related papers (2022-03-23T16:31:53Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
Graph auto-encoder (GAE) models are based on semi-supervised graph convolution networks (GCN)
We design a specific GAE-based model for graph clustering to be consistent with the theory, namely Embedding Graph Auto-Encoder (EGAE)
EGAE consists of one encoder and dual decoders.
arXiv Detail & Related papers (2020-02-20T09:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.