論文の概要: Quantum Pointwise Convolution: A Flexible and Scalable Approach for Neural Network Enhancement
- arxiv url: http://arxiv.org/abs/2412.01241v1
- Date: Mon, 02 Dec 2024 08:03:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:48:11.276014
- Title: Quantum Pointwise Convolution: A Flexible and Scalable Approach for Neural Network Enhancement
- Title(参考訳): 量子ポイントワイド・コンボリューション: ニューラルネットワークの強化のためのフレキシブルでスケーラブルなアプローチ
- Authors: An Ning, Tai-Yue Li, Nan-Yow Chen,
- Abstract要約: 本稿では,量子ニューラルネットワークフレームワークにポイントワイズ畳み込みを組み込んだ新しいアーキテクチャを提案する。
量子回路を用いてデータを高次元空間にマッピングし、より複雑な特徴関係を捉える。
実験では、FashionMNISTとCIFAR10データセットの分類タスクに量子ポイントワイズ畳み込み層を適用した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this study, we propose a novel architecture, the Quantum Pointwise Convolution, which incorporates pointwise convolution within a quantum neural network framework. Our approach leverages the strengths of pointwise convolution to efficiently integrate information across feature channels while adjusting channel outputs. By using quantum circuits, we map data to a higher-dimensional space, capturing more complex feature relationships. To address the current limitations of quantum machine learning in the Noisy Intermediate-Scale Quantum (NISQ) era, we implement several design optimizations. These include amplitude encoding for data embedding, allowing more information to be processed with fewer qubits, and a weight-sharing mechanism that accelerates quantum pointwise convolution operations, reducing the need to retrain for each input pixels. In our experiments, we applied the quantum pointwise convolution layer to classification tasks on the FashionMNIST and CIFAR10 datasets, where our model demonstrated competitive performance compared to its classical counterpart. Furthermore, these optimizations not only improve the efficiency of the quantum pointwise convolutional layer but also make it more readily deployable in various CNN-based or deep learning models, broadening its potential applications across different architectures.
- Abstract(参考訳): 本研究では,量子ニューラルネットワークフレームワークにポイントワイズ・コンボリューションを組み込んだ新しいアーキテクチャである量子ポイントワイズ・コンボリューションを提案する。
提案手法は,ポイントワイド・コンボリューションの強みを利用して,チャネル出力を調整しながら特徴チャネル間の情報を効率的に統合する。
量子回路を用いてデータを高次元空間にマッピングし、より複雑な特徴関係を捉える。
雑音中規模量子(NISQ)時代の量子機械学習の現在の限界に対処するため、我々はいくつかの設計最適化を実装した。
これには、より少ない量子ビットでより多くの情報を処理できるデータ埋め込みのための振幅エンコーディングや、量子ポイントワイドの畳み込み操作を加速するウェイトシェアリング機構が含まれており、各入力ピクセルに対して再トレーニングを行う必要がなくなる。
実験では,FashionMNISTとCIFAR10データセットの分類タスクに量子ポイントワイド畳み込み層を適用し,従来のモデルと比較して競合性能を示した。
さらに、これらの最適化は量子ポイントワイド畳み込み層の効率を向上するだけでなく、様々なCNNベースまたはディープラーニングモデルで容易にデプロイできるようにする。
関連論文リスト
- The Impact of Architecture and Cost Function on Dissipative Quantum Neural Networks [0.016385815610837167]
本稿では,各ビルディングブロックが任意の量子チャネルを実装可能な,散逸型量子ニューラルネットワーク(DQNN)の新しいアーキテクチャを提案する。
アイソメトリの多目的な1対1パラメトリ化を導出し,提案手法の効率的な実装を可能にした。
論文 参考訳(メタデータ) (2025-02-13T17:38:48Z) - Quantum Convolutional Neural Network with Flexible Stride [7.362858964229726]
本稿では,新しい量子畳み込みニューラルネットワークアルゴリズムを提案する。
異なるタスクに対応するために、柔軟にストライドを調整できます。
データスケールの指数加速度を、従来のものに比べて少ないメモリで達成することができる。
論文 参考訳(メタデータ) (2024-12-01T02:37:06Z) - Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
現代のAIシステムはニューラルネットワーク上に構築されることが多い。
古典的ニューラルネットワーク層を量子層に置き換える枠組みを提案する。
画像分類データセットの数値実験を行い、量子部品の体系的導入による性能変化を実証する。
論文 参考訳(メタデータ) (2024-09-26T07:01:29Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
本稿では,問題固有の量子特徴写像の設計を自動化するデータ駆動型手法を提案する。
私たちの研究は、量子機械学習の進歩におけるディープラーニングの実質的な役割を強調します。
論文 参考訳(メタデータ) (2024-01-20T03:11:59Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Feasible Architecture for Quantum Fully Convolutional Networks [4.849886707973093]
本稿では,ノイズの多い中間規模量子デバイス上で動作可能な,実現可能な純粋量子アーキテクチャを提案する。
本研究は、純粋量子完全畳み込みネットワークのトレーニングを成功させ、それをハイブリッドソリューションと比較することで利点を論じるものである。
論文 参考訳(メタデータ) (2021-10-05T01:06:54Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Variational learning for quantum artificial neural networks [0.0]
まず、量子プロセッサ上での人工ニューロンとフィードフォワードニューラルネットワークの実装について、最近の一連の研究を概説する。
次に、変分アンサンプリングプロトコルに基づく効率的な個別量子ノードのオリジナル実現を提案する。
メモリ効率の高いフィードフォワードアーキテクチャとの完全な互換性を維持しながら、単一ニューロンの活性化確率を決定するのに必要な量子回路深さを効果的に削減する。
論文 参考訳(メタデータ) (2021-03-03T16:10:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。