論文の概要: Towards Robust Interpretable Surrogates for Optimization
- arxiv url: http://arxiv.org/abs/2412.01264v1
- Date: Mon, 02 Dec 2024 08:31:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:41:34.284770
- Title: Towards Robust Interpretable Surrogates for Optimization
- Title(参考訳): 最適化のためのロバスト解釈可能なサロゲートを目指して
- Authors: Marc Goerigk, Michael Hartisch, Sebastian Merten,
- Abstract要約: 最適化モデルの実践的実装において重要な要素は、意図したユーザによる受け入れである。
本研究では,不確実性をモデル化するための異なる変種に基づく適切なモデルと解法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: An important factor in the practical implementation of optimization models is the acceptance by the intended users. This is influenced among other factors by the interpretability of the solution process. Decision rules that meet this requirement can be generated using the framework for inherently interpretable optimization models. In practice, there is often uncertainty about the parameters of an optimization problem. An established way to deal with this challenge is the concept of robust optimization. The goal of our work is to combine both concepts: to create decision trees as surrogates for the optimization process that are more robust to perturbations and still inherently interpretable. For this purpose we present suitable models based on different variants to model uncertainty, and solution methods. Furthermore, the applicability of heuristic methods to perform this task is evaluated. Both approaches are compared with the existing framework for inherently interpretable optimization models.
- Abstract(参考訳): 最適化モデルの実践的実装において重要な要素は、意図したユーザによる受け入れである。
これは、解法プロセスの解釈可能性によって影響される。
この要件を満たす決定ルールは、本質的に解釈可能な最適化モデルのためのフレームワークを使用して生成することができる。
実際、最適化問題のパラメータについてはしばしば不確実性がある。
この課題に対処するための確立された方法は、堅牢な最適化の概念である。
私たちの研究の目標は、両方の概念を組み合わせることです – 摂動に対して堅牢で、本質的に解釈可能な最適化プロセスの代理として、決定木を作成することです。
この目的のために、不確実性をモデル化するための異なる変種に基づく適切なモデルと解法を提案する。
さらに,本課題に対するヒューリスティック手法の適用性を評価した。
どちらの手法も、本質的に解釈可能な最適化モデルのための既存のフレームワークと比較される。
関連論文リスト
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Feature-Based Interpretable Surrogates for Optimization [0.8437187555622164]
本研究では、より一般的な最適化ルールを用いて解釈可能性を高める方法について検討する。
提案したルールは、具体的な解ではなく、共通の特徴を特徴とする解の集合にマップされる。
特に,提案手法が提案するソリューションの品質向上を,既存の解釈可能な最適化サロゲートと比較して実証する。
論文 参考訳(メタデータ) (2024-09-03T13:12:49Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then-フレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
このアプローチは非効率であり、最適化ステップを通じてバックプロパゲーションのための手作りの、問題固有のルールを必要とする。
本稿では,予測モデルを用いて観測可能な特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T01:32:06Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - A Surrogate Objective Framework for Prediction+Optimization with Soft
Constraints [29.962390392493507]
SPO+や直接最適化のような決定に焦点をあてた予測手法が、このギャップを埋めるために提案されている。
本稿では,実世界の線形および半定値負の二次計画問題に対して,解析的に微分可能な主観的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-22T17:09:57Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。