論文の概要: Adapting Large Language Models to Log Analysis with Interpretable Domain Knowledge
- arxiv url: http://arxiv.org/abs/2412.01377v2
- Date: Tue, 26 Aug 2025 03:33:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 15:23:52.228859
- Title: Adapting Large Language Models to Log Analysis with Interpretable Domain Knowledge
- Title(参考訳): 解釈可能なドメイン知識を用いた大規模言語モデルによるログ解析
- Authors: Yuhe Ji, Yilun Liu, Feiyu Yao, Minggui He, Shimin Tao, Xiaofeng Zhao, Su Chang, Xinhua Yang, Weibin Meng, Yuming Xie, Boxing Chen, Shenglin Zhang, Yongqian Sun,
- Abstract要約: ログ分析は、AIアプリケーションにおける重要なサブドメインである。
大規模言語モデル(LLM)を用いた既存のソリューションは、将来性を示しているが、自然言語とログ言語の間の大きなドメインギャップによって制限されている。
本稿では,解釈可能なドメイン知識をオープンソース LLM に統合することにより,これらの制限に対処するドメイン適応手法を提案する。
- 参考スコア(独自算出の注目度): 22.355668420639475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Log analysis represents a critical sub-domain within AI applications that facilitates automatic approaches to fault and error management of large-scaled software systems, saving labors of traditional manual methods. While existing solutions using large language models (LLMs) show promise, they are limited by a significant domain gap between natural and log languages (the latter contains rich domain-specific tokens such as status codes, IP addresses, resource pathes), which restricts their effectiveness in real-world applications. However, directly adapting general-purpose LLMs to log analysis using raw logs may degrade their performance due to inconsistent token distribution. In this paper, we present a domain adaptation approach that addresses these limitations by integrating interpretable domain knowledge into open-source LLMs through continual pre-training (CPT), which bridges this domain gap by adapting LLMs on interpretable natural texts with log knowledge (instead of raw logs) to reduce distribution discrepancy. To achieve this, we developed NLPLog, a comprehensive dataset containing over 250,000 question-answer pairs on log-related knowledge. Our resulting model, SuperLog, achieves the best performance across four log analysis tasks, with an average accuracy improvement of 12.01% over the second-best model. Ablation study also suggests advantages of domain adaption using interpretable log knowledge over using raw logs.
- Abstract(参考訳): ログ分析はAIアプリケーションにおける重要なサブドメインであり、大規模なソフトウェアシステムの障害とエラー管理への自動アプローチを促進し、従来の手作業による労力を削減する。
大規模言語モデル(LLM)を使用した既存のソリューションは、将来性を示しているが、それらは、自然言語とログ言語(後者はステータスコード、IPアドレス、リソースパスなど、リッチなドメイン固有のトークンを含む)の間の大きなドメインギャップによって制限されている。
しかし、生ログを用いたログ解析に汎用LLMを直接適用すると、不整合トークン分布により性能が低下する可能性がある。
本稿では,解釈可能なドメイン知識をオープンソース LLM に統合することで,これらの制約に対処するドメイン適応手法を提案する。
そこで我々はNLPLogを開発した。NLPLogは、ログ関連知識に関する25万以上の質問応答ペアを含む包括的データセットである。
得られたモデルであるSuperLogは、4つのログ解析タスクで最高のパフォーマンスを達成し、第2のベストモデルよりも平均精度が12.01%向上した。
アブレーション研究は、生ログよりも解釈可能なログ知識を用いたドメイン適応の利点も示唆している。
関連論文リスト
- A Comparative Study of Task Adaptation Techniques of Large Language Models for Identifying Sustainable Development Goals [39.71115518041856]
本研究では,国連の持続可能な開発目標に焦点をあてた,単一ラベルの多クラステキスト分類タスクを対象とした,プロプライエタリでオープンソースのテキスト分類モデルについて分析する。
その結果、より小さなモデルでは、プロンプトエンジニアリングによって最適化された場合、OpenAIのGPTのような大きなモデルと同等に動作できることが判明した。
論文 参考訳(メタデータ) (2025-06-18T07:42:32Z) - TAIJI: MCP-based Multi-Modal Data Analytics on Data Lakes [25.05627023905607]
モデルコンテキストプロトコル(MCP)に基づく新しいマルチモーダルデータ分析システムを提案する。
まず,データレイクにおけるマルチモーダルデータのクエリに適したセマンティック演算子階層を定義する。
次に、MPPベースの実行フレームワークを紹介し、各MPPサーバは、特定のデータモダリティに最適化された特別な基礎モデルをホストする。
論文 参考訳(メタデータ) (2025-05-16T14:03:30Z) - SoK: LLM-based Log Parsing [2.2779174914142346]
本稿では,29の大規模言語モデル (LLM) に基づくログ解析手法を体系的にレビューする。
我々は,学習パラダイムとプロンプトエンジニアリングパラダイム,効率・有効性向上技術,解析プロセスにおけるLLMの役割を分析した。
論文 参考訳(メタデータ) (2025-04-07T09:41:04Z) - Towards Robust Universal Information Extraction: Benchmark, Evaluation, and Solution [66.11004226578771]
既存の堅牢なベンチマークデータセットには2つの重要な制限がある。
単一の情報抽出(IE)タスクに対して、限られた範囲の摂動しか生成しない。
LLM(Large Language Models)の強力な生成機能を考慮すると、ruIE-Benchと呼ばれるRobust UIEのための新しいベンチマークデータセットを導入する。
データのうち、 textbf15% しかトレーニングしない場合、3つの IE タスクに対して、平均 textbf7.5% の相対的なパフォーマンス改善につながることを示す。
論文 参考訳(メタデータ) (2025-03-05T05:39:29Z) - LLM-ProS: Analyzing Large Language Models' Performance in Competitive Problem Solving [1.5106583432923495]
本稿では,最新のLLMの性能を評価するための新しい評価手法であるLLM-ProSを提案する。
2011年から2024年までの166のワールドファイナル問題のデータセットを使用して、モデルの推論、正確性、効率をベンチマークします。
この結果から,新しい問題を一般化し,適応し,解決するモデルの能力に有意な差異が認められた。
論文 参考訳(メタデータ) (2025-02-04T18:55:14Z) - CoddLLM: Empowering Large Language Models for Data Analytics [38.23203246023766]
大規模言語モデル(LLM)は、データ分析に革命をもたらす可能性がある。
我々は、Turbo後合成のための新しいデータレシピを公開した。
我々はMistralNeMo-12Bに基づく新しい基礎モデルであるCoddLLMをポストトレーニングする。
論文 参考訳(メタデータ) (2025-02-01T06:03:55Z) - On Domain-Adaptive Post-Training for Multimodal Large Language Models [72.67107077850939]
本稿では,MLLMのドメイン適応をポストトレーニングにより体系的に検討する。
データ合成、トレーニングパイプライン、タスク評価に重点を置いています。
バイオメディシン、食品、リモートセンシングなどの高インパクト領域で実験を行う。
論文 参考訳(メタデータ) (2024-11-29T18:42:28Z) - TransformLLM: Adapting Large Language Models via LLM-Transformed Reading Comprehension Text [5.523385345486362]
法的な応用に特化して設計された言語モデルを開発した。
我々の革新的なアプローチは、Large Language Models (LLMs) を用いて、生のトレーニングデータを読解テキストに変換することによって、法的タスクの能力を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-28T19:32:18Z) - Unleashing LLM Reasoning Capability via Scalable Question Synthesis from Scratch [54.12139707822201]
本稿では,新しい,スケーラブルで費用対効果の高いデータ合成手法であるScaleQuestを提案する。
スクラッチから多様な質問を生成することで、100万の問題解決ペアのデータセットを生成します。
私たちの実験では、データに基づいてトレーニングされたモデルが、既存のオープンソースデータセットより優れています。
論文 参考訳(メタデータ) (2024-10-24T12:42:04Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - LogParser-LLM: Advancing Efficient Log Parsing with Large Language Models [19.657278472819588]
LLM機能と統合された新しいログであるLog-LLMを紹介する。
粒度を解析する複雑な課題に対処し、ユーザが特定のニーズに合わせて粒度を調整できるようにするための新しい指標を提案する。
提案手法の有効性は,Loghub-2kと大規模LogPubベンチマークを用いて実験的に検証した。
論文 参考訳(メタデータ) (2024-08-25T05:34:24Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
大規模言語モデルを新しい言語に適応させるには、通常、継続事前訓練(CT)と、教師付き微調整(SFT)が含まれる。
我々は低リソース言語の代替としてモデルマージを提案し、異なる機能を持つモデルを追加トレーニングなしで単一のモデルに組み合わせる。
Llama-2-7Bをベースとした実験により、モデルマージはタスク解決能力の低い低リソース言語に対して、極めて少ないデータを持つシナリオにおいて、CT-then-SFTよりも優れていることが実証された。
論文 参考訳(メタデータ) (2024-07-04T15:14:17Z) - Enhancing Knowledge Retrieval with In-Context Learning and Semantic Search through Generative AI [3.9773527114058855]
本稿では,大規模言語モデルの生成能力とベクトルデータベースの高速かつ正確な検索能力を組み合わせた新しい手法を提案する。
開発したGTR(Generative Text Retrieval)は,非構造化データと構造化データの両方に適用可能である。
改良されたモデルであるGenerative Tabular Text Retrieval (GTR-T) は、大規模データベースクエリの効率を実証した。
論文 参考訳(メタデータ) (2024-06-13T23:08:06Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - AXOLOTL: Fairness through Assisted Self-Debiasing of Large Language
Model Outputs [20.772266479533776]
AXOLOTLはタスクやモデル間で不可知的に動作する新しい後処理フレームワークである。
バイアスを識別し、解像度を提案し、モデルにアウトプットを自己バイアスさせる。
このアプローチは計算コストを最小化し、モデル性能を保存する。
論文 参考訳(メタデータ) (2024-03-01T00:02:37Z) - Large Language Models as Data Preprocessors [9.99065004972981]
大規模言語モデル (LLM) は人工知能において大きな進歩を遂げている。
本研究では、データマイニングおよび分析アプリケーションにおいて重要な段階である、データ前処理におけるその可能性について検討する。
我々は,最先端のプロンプトエンジニアリング技術を統合したデータ前処理のためのLLMベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T23:28:43Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
本稿では,Language-Assisted Multi-Modalインストラクションチューニングデータセット,フレームワーク,ベンチマークを提案する。
我々の目標は、MLLMのトレーニングと評価のための成長するエコシステムとしてLAMMを確立することです。
本稿では,2次元および3次元視覚のための広範囲な視覚タスクをカバーする包括的データセットとベンチマークを提案する。
論文 参考訳(メタデータ) (2023-06-11T14:01:17Z) - RADDLE: An Evaluation Benchmark and Analysis Platform for Robust
Task-oriented Dialog Systems [75.87418236410296]
我々はraddleベンチマーク、コーパスのコレクション、および様々なドメインのモデルのパフォーマンスを評価するためのツールを紹介します。
RADDLEは強力な一般化能力を持つモデルを好んで奨励するように設計されている。
先行学習と微調整に基づく最近の最先端システムの評価を行い,異種ダイアログコーパスに基づく基礎的な事前学習が,ドメインごとの個別モデルをトレーニングするよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-29T08:58:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。