論文の概要: Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data
- arxiv url: http://arxiv.org/abs/2412.01383v1
- Date: Mon, 02 Dec 2024 11:12:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:52:00.087286
- Title: Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data
- Title(参考訳): 第2回FRCSyn-onGoing: 勝利解と後解析による合成データによる顔認識の改善
- Authors: Ivan DeAndres-Tame, Ruben Tolosana, Pietro Melzi, Ruben Vera-Rodriguez, Minchul Kim, Christian Rathgeb, Xiaoming Liu, Luis F. Gomez, Aythami Morales, Julian Fierrez, Javier Ortega-Garcia, Zhizhou Zhong, Yuge Huang, Yuxi Mi, Shouhong Ding, Shuigeng Zhou, Shuai He, Lingzhi Fu, Heng Cong, Rongyu Zhang, Zhihong Xiao, Evgeny Smirnov, Anton Pimenov, Aleksei Grigorev, Denis Timoshenko, Kaleb Mesfin Asfaw, Cheng Yaw Low, Hao Liu, Chuyi Wang, Qing Zuo, Zhixiang He, Hatef Otroshi Shahreza, Anjith George, Alexander Unnervik, Parsa Rahimi, Sébastien Marcel, Pedro C. Neto, Marco Huber, Jan Niklas Kolf, Naser Damer, Fadi Boutros, Jaime S. Cardoso, Ana F. Sequeira, Andrea Atzori, Gianni Fenu, Mirko Marras, Vitomir Štruc, Jiang Yu, Zhangjie Li, Jichun Li, Weisong Zhao, Zhen Lei, Xiangyu Zhu, Xiao-Yu Zhang, Bernardo Biesseck, Pedro Vidal, Luiz Coelho, Roger Granada, David Menotti,
- Abstract要約: 第2回FRCSyn-onGoingチャレンジは、CVPR 2024で開始された第2回顔認識チャレンジ(FRCSyn)に基づいている。
我々は、顔認識における現在の課題を解決するために、個々のデータと実際のデータの組み合わせの両方で合成データの利用を検討することに重点を置いている。
- 参考スコア(独自算出の注目度): 104.30479583607918
- License:
- Abstract: Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark i) the proposal of novel Generative AI methods and synthetic data, and ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.
- Abstract(参考訳): 合成データは主に、さまざまなシナリオ、品質、人口集団など、実際のデータを取得する際のプライバシー上の懸念と課題から、顔認識技術で人気が高まっている。
また、生成可能な大量のデータや、特定の問題解決ニーズに適応するようにカスタマイズする機能など、実際のデータに対していくつかのアドバンテージを提供する。
このようなデータを効果的に活用するためには、顔認識モデルは、合成データを最大限に活用するために特別に設計されるべきである。
そこで, CVPR 2024で開始された第2顔認識チャレンジ(FRCSyn)に基づき, 新たな生成AI手法と合成データの提案を推進し, より優れた顔認識システムへの合成データの適用について検討するため, CVPR 2024で開始された第2顔認識チャレンジ(FRCSyn)をベースとした第2FRCSyn-onGoingチャレンジを紹介する。
これは、研究者にベンチマーク可能なプラットフォームを提供する、進行中の課題である。
一 新規な生成AI手法及び合成データの提案及び
二 合成データを活用するために特別に提案された新しい顔認識システム
本研究は,学習とテストの年齢差,ポーズの変化,オクルージョンなどの要求状況における,人口統計バイアスやドメイン適応,パフォーマンス制約といった,顔認識における現在の課題を解決するために,実データと個別と組み合わせて合成データの利用を検討することに焦点を当てる。
この第2版では、合成データベースをDCFaceとGANDiffFaceに制限した第1版と直接比較するなど、非常に興味深い結果が得られている。
関連論文リスト
- Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data [104.45155847778584]
本稿では,合成データ時代における第2回顔認識チャレンジの概要について述べる。
FRCSynは、現在の技術的制限に対処するために、顔認識における合成データの使用について調査することを目的としている。
論文 参考訳(メタデータ) (2024-04-16T08:15:10Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
大規模な顔認識データセットは、インターネットをクロールして個人の同意なしに収集し、法的、倫理的、プライバシー上の懸念を提起する。
近年、ウェブクローリングされた顔認識データセットにおける懸念を軽減するために、合成顔認識データセットの生成が提案されている。
本稿では,第18回IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)と共同で開催されているSynthetic Data for Face Recognition (SDFR)コンペティションの概要を紹介する。
SDFRコンペティションは2つのタスクに分けられ、参加者は新しい合成データセットまたは/または既存のデータセットを使用して顔認識システムを訓練することができる。
論文 参考訳(メタデータ) (2024-04-06T10:30:31Z) - If It's Not Enough, Make It So: Reducing Authentic Data Demand in Face Recognition through Synthetic Faces [16.977459035497162]
大規模な顔データセットは、主にWebベースのイメージから作成され、明示的なユーザの同意が欠如している。
本稿では,合成顔データを用いて効果的な顔認識モデルの訓練を行う方法について検討する。
論文 参考訳(メタデータ) (2024-04-04T15:45:25Z) - FRCSyn Challenge at WACV 2024:Face Recognition Challenge in the Era of
Synthetic Data [82.5767720132393]
本稿では,WACV 2024 で組織された FRCSyn における顔認識チャレンジの概要について述べる。
これは、顔認識における合成データの利用を探求し、テクノロジーの既存の限界に対処する最初の国際的課題である。
論文 参考訳(メタデータ) (2023-11-17T12:15:40Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Synthetic Data for Face Recognition: Current State and Future Prospects [14.288753326973984]
本研究の目的は,顔認識における合成顔データの利用事例を明確かつ構造化した画像を提供することである。
本稿では,顔認識における合成データの利用に直面する課題と,顔認識分野における合成データの今後の展望について論じる。
論文 参考訳(メタデータ) (2023-05-01T18:25:22Z) - On the use of automatically generated synthetic image datasets for
benchmarking face recognition [2.0196229393131726]
GAN(Generative Adversarial Networks)の最近の進歩は、実際のデータセットを合成データセットで置き換える経路を提供する。
現実的な顔画像を合成するためのGAN(Generative Adversarial Networks)の最近の進歩は、実際のデータセットを合成データセットで置き換える経路を提供する。
合成データセットのベンチマーク結果は、良い置換であり、多くの場合、実際のデータセットのベンチマークと同様のエラー率とシステムランキングを提供する。
論文 参考訳(メタデータ) (2021-06-08T09:54:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。