論文の概要: Fire-Image-DenseNet (FIDN) for predicting wildfire burnt area using remote sensing data
- arxiv url: http://arxiv.org/abs/2412.01400v1
- Date: Mon, 02 Dec 2024 11:35:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:51:13.216672
- Title: Fire-Image-DenseNet (FIDN) for predicting wildfire burnt area using remote sensing data
- Title(参考訳): リモートセンシングデータを用いた山火事発生域予測のためのFIDN
- Authors: Bo Pang, Sibo Cheng, Yuhan Huang, Yufang Jin, Yike Guo, I. Colin Prentice, Sandy P. Harrison, Rossella Arcucci,
- Abstract要約: 深層学習に基づく予測モデルFire-Image-DenseNet(FIDN)を開発した。
FIDNは、山火事の環境および気象要因に関する、ほぼリアルタイムおよび再分析データから得られた空間的特徴を用いる。
平均二乗誤差 (MSE) は, 細胞オートマトン (CA) と最小走行時間 (MTT) に基づく予測モデルよりも約82%, 67%低い値を示した。
- 参考スコア(独自算出の注目度): 15.516417504988313
- License:
- Abstract: Predicting the extent of massive wildfires once ignited is essential to reduce the subsequent socioeconomic losses and environmental damage, but challenging because of the complexity of fire behaviour. Existing physics-based models are limited in predicting large or long-duration wildfire events. Here, we develop a deep-learning-based predictive model, Fire-Image-DenseNet (FIDN), that uses spatial features derived from both near real-time and reanalysis data on the environmental and meteorological drivers of wildfire. We trained and tested this model using more than 300 individual wildfires that occurred between 2012 and 2019 in the western US. In contrast to existing models, the performance of FIDN does not degrade with fire size or duration. Furthermore, it predicts final burnt area accurately even in very heterogeneous landscapes in terms of fuel density and flammability. The FIDN model showed higher accuracy, with a mean squared error (MSE) about 82% and 67% lower than those of the predictive models based on cellular automata (CA) and the minimum travel time (MTT) approaches, respectively. Its structural similarity index measure (SSIM) averages 97%, outperforming the CA and FlamMap MTT models by 6% and 2%, respectively. Additionally, FIDN is approximately three orders of magnitude faster than both CA and MTT models. The enhanced computational efficiency and accuracy advancements offer vital insights for strategic planning and resource allocation for firefighting operations.
- Abstract(参考訳): 一度発火した大規模な山火事の程度を予測することは、その後の社会経済的な損失と環境被害を減らすのに不可欠であるが、火災行動の複雑さのために困難である。
既存の物理モデルでは、大規模または長期にわたる山火事の予測に限られている。
そこで我々は,山火事の環境・気象要因のリアルタイム・再解析データから得られた空間的特徴を利用した,深層学習に基づく予測モデルFire-Image-DenseNet(FIDN)を開発した。
2012年から2019年にかけて米国西部で発生した300以上の個別の山火事を使って、このモデルを訓練し、テストした。
既存のモデルとは対照的に、FIDNの性能は火の大きさや持続時間で劣化しない。
さらに、燃料密度と可燃性の観点から非常に異質な景観においても、最終燃焼面積を正確に予測する。
FIDNモデルでは平均二乗誤差 (MSE) が, セルオートマトン (CA) と最小走行時間 (MTT) に基づく予測モデルよりも約82%, 67%低い値を示した。
構造類似度指標(SSIM)の平均値は97%であり,CAモデルとFlamMap MTTモデルでは6%,FlamMapモデルでは2%を上回った。
さらに、FIDNはCAモデルとMTTモデルより約3桁高速である。
計算効率と精度の向上により、戦略的計画のための重要な洞察と、消防活動のための資源配分が提供される。
関連論文リスト
- Modelling wildland fire burn severity in California using a spatial
Super Learner approach [0.04188114563181614]
米国西部の森林火災の頻度が高まる中、燃え尽き症候群を理解・正確に予測するツールを開発する必要がある。
遠隔で検知した火災予報データを用いて,燃焼後重大度を予測する機械学習モデルを開発した。
このモデルが実装されると、カリフォルニアの人命、財産、資源、生態系が失われる可能性がある。
論文 参考訳(メタデータ) (2023-11-25T22:09:14Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Generative Algorithms for Fusion of Physics-Based Wildfire Spread Models
with Satellite Data for Initializing Wildfire Forecasts [0.0]
衛星による火災検出の最近の進歩は、火災拡散予測を改善するために測定を使用する機会を与えている。
本研究は,衛星観測から山火事の歴史を推定する手法を開発した。
論文 参考訳(メタデータ) (2023-09-05T23:24:34Z) - A generative model for surrogates of spatial-temporal wildfire
nowcasting [13.551652250858144]
3次元ベクトル量子変分オートコーダを用いて生成モデルを提案する。
このモデルは、最近カリフォルニア州で起きた大規模な山火事(チムニー火災)のエコリージョンでテストされている。
数値的な結果から, 連続かつ構造的な火災シナリオの生成に成功した。
論文 参考訳(メタデータ) (2023-08-05T06:54:18Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
深層ニューラルネットワークは、気象条件をモデル化するための代替パラダイムを提供する。
MetNet-3は、密度とスパースの両方のデータセンサーから学習し、降水、風、温度、露点を最大24時間前に予測する。
MetNet-3は、それぞれ時間分解能と空間分解能が高く、最大2分と1km、運用遅延は低い。
論文 参考訳(メタデータ) (2023-06-06T07:07:54Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
この研究は、AIが火災を検出し、認識し、画像ストリーム上のオブジェクト検出を使用して検出時間を短縮する可能性を検討する。
そこで我々は, YOLOv4オブジェクト検出器をベースとした複数のモデルのトレーニングと評価に使用されてきた複数の公開情報源から, 適切なデータを収集, ラベル付けした。
論文 参考訳(メタデータ) (2022-12-09T11:32:36Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
ワイルドファイアはアメリカ合衆国西海岸で頻繁に起こる最大の災害の1つである。
カリフォルニアの山火事リスクが高い地域を解析・評価するための静的・動的予測モデルを提案します。
論文 参考訳(メタデータ) (2021-03-14T17:56:17Z) - Probing Model Signal-Awareness via Prediction-Preserving Input
Minimization [67.62847721118142]
モデルが正しい脆弱性信号を捕捉して予測する能力を評価する。
SAR(Signal-Aware Recall)と呼ばれる新しい指標を用いて,モデルの信号認識を計測する。
その結果,90年代以降のリコールから60年代以降のリコールは,新たな指標で大幅に減少した。
論文 参考訳(メタデータ) (2020-11-25T20:05:23Z) - Uncertainty Aware Wildfire Management [6.997483623023005]
アメリカ合衆国では近年の山火事で生命が失われ、数十億ドルが失われた。
大規模に展開するリソースは限られており、火災の広がりを予測することは困難である。
本稿では,山火事対策のための意思決定論的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-15T17:47:31Z) - Modeling Wildfire Perimeter Evolution using Deep Neural Networks [0.0]
本研究では,24時間間における山火事周囲の進化を予測できる山火事拡散モデルを提案する。
このモデルはカリフォルニアのシエラネバダ山脈西部の山火事から、実際の歴史的データセットから、山火事の拡散力学を学習することができる。
論文 参考訳(メタデータ) (2020-09-08T20:06:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。