CSP-AIT-Net: A contrastive learning-enhanced spatiotemporal graph attention framework for short-term metro OD flow prediction with asynchronous inflow tracking
- URL: http://arxiv.org/abs/2412.01419v2
- Date: Sat, 08 Feb 2025 15:51:41 GMT
- Title: CSP-AIT-Net: A contrastive learning-enhanced spatiotemporal graph attention framework for short-term metro OD flow prediction with asynchronous inflow tracking
- Authors: Yichen Wang, Chengcheng Yu,
- Abstract summary: Current models often fail to capture the asynchronous departure characteristics of origin-destination (OD) passenger flow data.
We propose a novel framework designed to enhance OD flow prediction by incorporating asynchronous inflow tracking and advanced semantics.
This work contributes to enhancing metro operational efficiency, scheduling precision, and overall system safety.
- Score: 0.7437000580479967
- License:
- Abstract: Accurate origin-destination (OD) passenger flow prediction is crucial for enhancing metro system efficiency, optimizing scheduling, and improving passenger experiences. However, current models often fail to effectively capture the asynchronous departure characteristics of OD flows and underutilize the inflow and outflow data, which limits their prediction accuracy. To address these issues, we propose CSP-AIT-Net, a novel spatiotemporal graph attention framework designed to enhance OD flow prediction by incorporating asynchronous inflow tracking and advanced station semantics representation. Our framework restructures the OD flow prediction paradigm by first predicting outflows and then decomposing OD flows using a spatiotemporal graph attention mechanism. To enhance computational efficiency, we introduce a masking mechanism and propose asynchronous passenger flow graphs that integrate inflow and OD flow with conservation constraints. Furthermore, we employ contrastive learning to extract high-dimensional land use semantics of metro stations, enriching the contextual understanding of passenger mobility patterns. Validation of the Shanghai metro system demonstrates improvement in short-term OD flow prediction accuracy over state-of-the-art methods. This work contributes to enhancing metro operational efficiency, scheduling precision, and overall system safety.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - ST-Mamba: Spatial-Temporal Selective State Space Model for Traffic Flow Prediction [32.44888387725925]
The proposed ST-Mamba model is first to leverage the power of spatial-temporal learning in traffic flow prediction without using graph modeling.
The proposed ST-Mamba model achieves a 61.11% improvement in computational speed and increases prediction accuracy by 0.67%.
Experiments with real-world traffic datasets demonstrate that the textsfST-Mamba model sets a new benchmark in traffic flow prediction.
arXiv Detail & Related papers (2024-04-20T03:57:57Z) - Predicting Traffic Flow with Federated Learning and Graph Neural with Asynchronous Computations Network [0.0]
We present a novel deep-learning method called Federated Learning and Asynchronous Graph Convolutional Networks (FLAGCN)
Our framework incorporates the principles of asynchronous graph convolutional networks with federated learning to enhance accuracy and efficiency of real-time traffic flow prediction.
arXiv Detail & Related papers (2024-01-05T09:36:42Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Online Spatio-Temporal Correlation-Based Federated Learning for Traffic
Flow Forecasting [11.253575460227127]
In this paper, we perform the first study of forecasting traffic flow adopting Online Learning (OL) manner in FL framework.
We then propose a novel prediction method named Online Spatio-Temporal Correlation-based Federated Learning (FedOSTC) to guarantee performance gains regardless of traffic fluctuation.
arXiv Detail & Related papers (2023-02-17T02:37:36Z) - Accurate non-stationary short-term traffic flow prediction method [0.0]
This paper proposes a Long Short-Term Memory (LSTM) based method that can forecast short-term traffic flow precisely.
The proposed method performs favorably against other state-of-the-art methods with better performance on extreme outliers, delay effects, and trend-changing responses.
arXiv Detail & Related papers (2022-05-01T17:11:34Z) - Bootstrap Motion Forecasting With Self-Consistent Constraints [52.88100002373369]
We present a novel framework to bootstrap Motion forecasting with Self-consistent Constraints.
The motion forecasting task aims at predicting future trajectories of vehicles by incorporating spatial and temporal information from the past.
We show that our proposed scheme consistently improves the prediction performance of several existing methods.
arXiv Detail & Related papers (2022-04-12T14:59:48Z) - Real-time Object Detection for Streaming Perception [84.2559631820007]
Streaming perception is proposed to jointly evaluate the latency and accuracy into a single metric for video online perception.
We build a simple and effective framework for streaming perception.
Our method achieves competitive performance on Argoverse-HD dataset and improves the AP by 4.9% compared to the strong baseline.
arXiv Detail & Related papers (2022-03-23T11:33:27Z) - Spatial-Temporal Attention Fusion Network for short-term passenger flow
prediction on holidays in urban rail transit systems [9.725264855780482]
The short term passenger flow prediction of the urban rail transit system is of great significance for traffic operation and management.
Most of the existing models mainly predict the passenger flow on general weekdays or weekends.
We propose a deep learning-based model named Spatial Temporal Attention Fusion Network for short-term passenger flow prediction on holidays.
arXiv Detail & Related papers (2022-02-27T01:06:24Z) - GMFlow: Learning Optical Flow via Global Matching [124.57850500778277]
We propose a GMFlow framework for learning optical flow estimation.
It consists of three main components: a customized Transformer for feature enhancement, a correlation and softmax layer for global feature matching, and a self-attention layer for flow propagation.
Our new framework outperforms 32-iteration RAFT's performance on the challenging Sintel benchmark.
arXiv Detail & Related papers (2021-11-26T18:59:56Z) - Prediction of Traffic Flow via Connected Vehicles [77.11902188162458]
We propose a Short-term Traffic flow Prediction framework so that transportation authorities take early actions to control flow and prevent congestion.
We anticipate flow at future time frames on a target road segment based on historical flow data and innovative features such as real time feeds and trajectory data provided by Connected Vehicles (CV) technology.
We show how this novel approach allows advanced modelling by integrating into the forecasting of flow, the impact of various events that CV realistically encountered on segments along their trajectory.
arXiv Detail & Related papers (2020-07-10T16:00:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.