Towards better traffic volume estimation: Jointly addressing the
underdetermination and nonequilibrium problems with correlation-adaptive GNNs
- URL: http://arxiv.org/abs/2303.05660v3
- Date: Sat, 28 Oct 2023 05:55:01 GMT
- Title: Towards better traffic volume estimation: Jointly addressing the
underdetermination and nonequilibrium problems with correlation-adaptive GNNs
- Authors: Tong Nie, Guoyang Qin, Yunpeng Wang, Jian Sun
- Abstract summary: This paper studies two key problems with regard to traffic volume estimation: (1) underdetermined traffic flows caused by undetected movements, and (2) non-equilibrium traffic flows arise from congestion propagation.
We demonstrate a graph-based deep learning method that can offer a data-driven, model-free and correlation adaptive approach to tackle the above issues.
- Score: 47.18837782862979
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic volume is an indispensable ingredient to provide fine-grained
information for traffic management and control. However, due to limited
deployment of traffic sensors, obtaining full-scale volume information is far
from easy. Existing works on this topic primarily focus on improving the
overall estimation accuracy of a particular method and ignore the underlying
challenges of volume estimation, thereby having inferior performances on some
critical tasks. This paper studies two key problems with regard to traffic
volume estimation: (1) underdetermined traffic flows caused by undetected
movements, and (2) non-equilibrium traffic flows arise from congestion
propagation. Here we demonstrate a graph-based deep learning method that can
offer a data-driven, model-free and correlation adaptive approach to tackle the
above issues and perform accurate network-wide traffic volume estimation.
Particularly, in order to quantify the dynamic and nonlinear relationships
between traffic speed and volume for the estimation of underdetermined flows, a
speed patternadaptive adjacent matrix based on graph attention is developed and
integrated into the graph convolution process, to capture non-local
correlations between sensors. To measure the impacts of non-equilibrium flows,
a temporal masked and clipped attention combined with a gated temporal
convolution layer is customized to capture time-asynchronous correlations
between upstream and downstream sensors. We then evaluate our model on a
real-world highway traffic volume dataset and compare it with several benchmark
models. It is demonstrated that the proposed model achieves high estimation
accuracy even under 20% sensor coverage rate and outperforms other baselines
significantly, especially on underdetermined and non-equilibrium flow
locations. Furthermore, comprehensive quantitative model analysis are also
carried out to justify the model designs.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - A Slow-Shifting Concerned Machine Learning Method for Short-term Traffic
Flow Forecasting [21.6456624219159]
A crucial challenge in traffic flow forecasting is the slow shifting in temporal peaks between daily and weekly cycles.
We propose a slow shifting concerned machine learning method for traffic flow forecasting, which includes two parts.
Our proposed method outperforms the state-of-art results by 14.55% and 62.56% using the metrics of root mean squared error and mean absolute percentage error, respectively.
arXiv Detail & Related papers (2023-03-31T03:07:53Z) - DistractFlow: Improving Optical Flow Estimation via Realistic
Distractions and Pseudo-Labeling [49.46842536813477]
We propose a novel data augmentation approach, DistractFlow, for training optical flow estimation models.
We combine one of the frames in the pair with a distractor image depicting a similar domain, which allows for inducing visual perturbations congruent with natural objects and scenes.
Our approach allows increasing the number of available training pairs significantly without requiring additional annotations.
arXiv Detail & Related papers (2023-03-24T15:42:54Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Accurate non-stationary short-term traffic flow prediction method [0.0]
This paper proposes a Long Short-Term Memory (LSTM) based method that can forecast short-term traffic flow precisely.
The proposed method performs favorably against other state-of-the-art methods with better performance on extreme outliers, delay effects, and trend-changing responses.
arXiv Detail & Related papers (2022-05-01T17:11:34Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
Traffic data are highly nonlinear and have complex spatial correlations between road nodes.
Existing approaches usually use fixed traffic road network topology maps and independent time series modules to capture Spatial-temporal correlations.
We propose a new prediction model which captures the spatial dependence of the traffic network through a Graph Attention Network(GAT) and then analyzes the causal relationship of the traffic data.
arXiv Detail & Related papers (2022-03-21T06:38:34Z) - Traffic Flow Forecasting with Maintenance Downtime via Multi-Channel
Attention-Based Spatio-Temporal Graph Convolutional Networks [4.318655493189584]
We propose a model to predict traffic speed under the impact of construction work.
The model is based on the powerful attention-based,temporal graph convolution architecture but utilizes various channels to integrate different sources of information.
The model is evaluated on two benchmark datasets and a novel dataset we have collected over the bustling roadway's corner in Northern Virginia.
arXiv Detail & Related papers (2021-10-04T16:07:37Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - Prediction of Traffic Flow via Connected Vehicles [77.11902188162458]
We propose a Short-term Traffic flow Prediction framework so that transportation authorities take early actions to control flow and prevent congestion.
We anticipate flow at future time frames on a target road segment based on historical flow data and innovative features such as real time feeds and trajectory data provided by Connected Vehicles (CV) technology.
We show how this novel approach allows advanced modelling by integrating into the forecasting of flow, the impact of various events that CV realistically encountered on segments along their trajectory.
arXiv Detail & Related papers (2020-07-10T16:00:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.