論文の概要: Multi-Facet Blending for Faceted Query-by-Example Retrieval
- arxiv url: http://arxiv.org/abs/2412.01443v1
- Date: Mon, 02 Dec 2024 12:32:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:51:05.548687
- Title: Multi-Facet Blending for Faceted Query-by-Example Retrieval
- Title(参考訳): Faceted Query-by-Example Retrieval のための多面ブレンディング
- Authors: Heejin Do, Sangwon Ryu, Jonghwi Kim, Gary Geunbae Lee,
- Abstract要約: 本稿では,多面体ブレンディング(FaBle)拡張法を提案する。
モジュール化によって、事前に定義されたファセットの知識やラベルが不要になります。
1K文書上のFaBle拡張は、ファセット条件埋め込みの訓練を著しく支援する。
- 参考スコア(独自算出の注目度): 5.156059061769101
- License:
- Abstract: With the growing demand to fit fine-grained user intents, faceted query-by-example (QBE), which retrieves similar documents conditioned on specific facets, has gained recent attention. However, prior approaches mainly depend on document-level comparisons using basic indicators like citations due to the lack of facet-level relevance datasets; yet, this limits their use to citation-based domains and fails to capture the intricacies of facet constraints. In this paper, we propose a multi-facet blending (FaBle) augmentation method, which exploits modularity by decomposing and recomposing to explicitly synthesize facet-specific training sets. We automatically decompose documents into facet units and generate (ir)relevant pairs by leveraging LLMs' intrinsic distinguishing capabilities; then, dynamically recomposing the units leads to facet-wise relevance-informed document pairs. Our modularization eliminates the need for pre-defined facet knowledge or labels. Further, to prove the FaBle's efficacy in a new domain beyond citation-based scientific paper retrieval, we release a benchmark dataset for educational exam item QBE. FaBle augmentation on 1K documents remarkably assists training in obtaining facet conditional embeddings.
- Abstract(参考訳): きめ細かなユーザ意図に適合する要求が高まっている中、特定のファセットに条件付けされた類似文書を検索するQBE(faceted query-by-example)が近年注目を集めている。
しかし、従来のアプローチは主に、ファセットレベルの関連データセットが欠如しているため、引用のような基本的な指標を使った文書レベルの比較に頼っている。
本稿では,多面体ブレンディング(FaBle)拡張手法を提案する。
文書を自動的にファセット単位に分解し, LLMの本質的な識別能力を活用して(ir)関連ペアを生成する。
モジュール化によって、事前に定義されたファセットの知識やラベルが不要になります。
さらに、引用に基づく科学論文検索以外の分野におけるFaBleの有効性を証明するため、教育試験項目QBEのベンチマークデータセットを公表した。
1K文書上のFaBle拡張は、ファセット条件埋め込みの訓練を著しく支援する。
関連論文リスト
- Quam: Adaptive Retrieval through Query Affinity Modelling [15.3583908068962]
ユーザ情報要求に基づいて文書をランク付けする関連モデルを構築することは,情報検索とNLPコミュニティの中心的な課題である。
提案するQuamにより,適応検索の初期段階の統一的な視点を提案する。
提案手法であるQuamは,リコール性能を26%向上させる。
論文 参考訳(メタデータ) (2024-10-26T22:52:12Z) - Efficient Document Ranking with Learnable Late Interactions [73.41976017860006]
クロスエンコーダ(CE)とデュアルエンコーダ(DE)モデルは,情報検索におけるクエリドキュメント関連性の2つの基本的なアプローチである。
関連性を予測するため、CEモデルは共同クエリドキュメントの埋め込みを使用し、DEモデルは分解クエリとドキュメントの埋め込みを維持している。
近年、DEM構造と軽量スコアラを用いて、より好ましいレイテンシ品質のトレードオフを実現するために、遅延相互作用モデルが提案されている。
論文 参考訳(メタデータ) (2024-06-25T22:50:48Z) - R4: Reinforced Retriever-Reorder-Responder for Retrieval-Augmented Large Language Models [32.598670876662375]
Retrieval-augmented large language model (LLMs) は、情報検索システムによって取得された関連コンテンツを利用して正しい応答を生成する。
既存のレトリバー・サプライヤ・メソッドは、テキスト生成タスクを実行するために LLM のプロンプトに関連文書を追加するのが一般的である。
検索拡張LDMのための文書順序付けを学習するための新しいパイプライン"Reinforced Retriever-Reorder-Responder"を提案する。
論文 参考訳(メタデータ) (2024-05-04T12:59:10Z) - Document-Level In-Context Few-Shot Relation Extraction via Pre-Trained Language Models [29.94694305204144]
本稿では,文書レベルのインコンテクスト・イン・ショット関係抽出のための新しいフレームワークを提案する。
ドキュメントレベルの関係抽出用データセットとして最大であるDocREDを用いて,本フレームワークの評価を行った。
論文 参考訳(メタデータ) (2023-10-17T09:10:27Z) - Questions Are All You Need to Train a Dense Passage Retriever [123.13872383489172]
ARTは、ラベル付きトレーニングデータを必要としない高密度検索モデルをトレーニングするための、新しいコーパスレベルのオートエンコーディングアプローチである。
そこで,(1) 入力質問を用いて証拠文書の集合を検索し,(2) 文書を用いて元の質問を再構築する確率を計算する。
論文 参考訳(メタデータ) (2022-06-21T18:16:31Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
大規模な検索は、クエリを与えられた巨大なコレクションから関連ドキュメントをリコールすることである。
事前学習型言語モデル(PLM)に基づく最近の検索手法は,高密度ベクターあるいはレキシコンに基づくパラダイムに大別することができる。
本論文では,高密度ベクトルとレキシコンに基づく検索を2つの表現能力を持つ1つのモデルで統合する学習フレームワークUnifieRを提案する。
論文 参考訳(メタデータ) (2022-05-23T11:01:59Z) - Retrieval Enhanced Data Augmentation for Question Answering on Privacy
Policies [74.01792675564218]
本研究では,ラベルのないポリシー文書から関連するテキストセグメントを抽出する検索モデルに基づくデータ拡張フレームワークを開発する。
拡張データの多様性と品質を改善するために,複数の事前学習言語モデル(LM)を活用し,ノイズ低減フィルタモデルでそれらをカスケードする。
PrivacyQAベンチマークの強化データを使用して、既存のベースラインを大きなマージン(10% F1)に高め、新しい最先端のF1スコアを50%達成します。
論文 参考訳(メタデータ) (2022-04-19T15:45:23Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
本稿では,ジェネレーション方式で証拠を検索する最初のシステムであるGEREを提案する。
FEVERデータセットの実験結果は、GEREが最先端のベースラインよりも大幅に改善されていることを示している。
論文 参考訳(メタデータ) (2022-04-12T03:49:35Z) - Augmenting Document Representations for Dense Retrieval with
Interpolation and Perturbation [49.940525611640346]
ドキュメント拡張(Document Augmentation for dense Retrieval)フレームワークは、ドキュメントの表現をDense Augmentationとperturbationsで強化する。
2つのベンチマークデータセットによる検索タスクにおけるDARの性能評価を行い、ラベル付き文書とラベルなし文書の密集検索において、提案したDARが関連するベースラインを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-03-15T09:07:38Z) - CODER: An efficient framework for improving retrieval through
COntextualized Document Embedding Reranking [11.635294568328625]
本稿では,最小計算コストで広範囲の検索モデルの性能を向上させるためのフレームワークを提案する。
ベース密度検索法により抽出された事前計算された文書表現を利用する。
実行時に第一段階のメソッドの上に無視可能な計算オーバーヘッドを発生させ、最先端の高密度検索手法と簡単に組み合わせられるようにする。
論文 参考訳(メタデータ) (2021-12-16T10:25:26Z) - Improving Query Representations for Dense Retrieval with Pseudo
Relevance Feedback [29.719150565643965]
本稿では,疑似関連性フィードバック(PRF)を用いて高密度検索のためのクエリ表現を改善する新しいクエリエンコーダであるANCE-PRFを提案する。
ANCE-PRF は BERT エンコーダを使用し、検索モデルである ANCE からクエリとトップ検索されたドキュメントを消費し、関連ラベルから直接クエリの埋め込みを生成する。
PRFエンコーダは、学習された注意機構でノイズを無視しながら、PRF文書から関連および補完的な情報を効果的にキャプチャする。
論文 参考訳(メタデータ) (2021-08-30T18:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。