TACO: Training-free Sound Prompted Segmentation via Semantically Constrained Audio-visual CO-factorization
- URL: http://arxiv.org/abs/2412.01488v2
- Date: Mon, 10 Feb 2025 10:56:47 GMT
- Title: TACO: Training-free Sound Prompted Segmentation via Semantically Constrained Audio-visual CO-factorization
- Authors: Hugo Malard, Michel Olvera, Stephane Lathuiliere, Slim Essid,
- Abstract summary: We tackle the specific task of sound-prompted segmentation, aiming to segment image regions corresponding to objects heard in an audio signal.
Most existing approaches tackle this problem by fine-tuning pre-trained models or by training additional modules specifically for the task.
We adopt a different strategy: we introduce a training-free approach that leverages Non-negative Matrix Factorization (NMF) to co-factorize audio and visual features from pre-trained models so as to reveal shared interpretable concepts.
- Score: 7.448652734290433
- License:
- Abstract: Large-scale pre-trained audio and image models demonstrate an unprecedented degree of generalization, making them suitable for a wide range of applications. Here, we tackle the specific task of sound-prompted segmentation, aiming to segment image regions corresponding to objects heard in an audio signal. Most existing approaches tackle this problem by fine-tuning pre-trained models or by training additional modules specifically for the task. We adopt a different strategy: we introduce a training-free approach that leverages Non-negative Matrix Factorization (NMF) to co-factorize audio and visual features from pre-trained models so as to reveal shared interpretable concepts. These concepts are passed on to an open-vocabulary segmentation model for precise segmentation maps. By using frozen pre-trained models, our method achieves high generalization and establishes state-of-the-art performance in unsupervised sound-prompted segmentation, significantly surpassing previous unsupervised methods.
Related papers
- Seeing and Hearing: Open-domain Visual-Audio Generation with Diffusion
Latent Aligners [69.70590867769408]
Video and audio content creation serves as the core technique for the movie industry and professional users.
Existing diffusion-based methods tackle video and audio generation separately, which hinders the technique transfer from academia to industry.
In this work, we aim at filling the gap, with a carefully designed optimization-based framework for cross-visual-audio and joint-visual-audio generation.
arXiv Detail & Related papers (2024-02-27T17:57:04Z) - Cross-modal Prompts: Adapting Large Pre-trained Models for Audio-Visual
Downstream Tasks [55.36987468073152]
This paper proposes a novel Dual-Guided Spatial-Channel-Temporal (DG-SCT) attention mechanism.
The DG-SCT module incorporates trainable cross-modal interaction layers into pre-trained audio-visual encoders.
Our proposed model achieves state-of-the-art results across multiple downstream tasks, including AVE, AVVP, AVS, and AVQA.
arXiv Detail & Related papers (2023-11-09T05:24:20Z) - Leveraging Foundation models for Unsupervised Audio-Visual Segmentation [49.94366155560371]
Audio-Visual (AVS) aims to precisely outline audible objects in a visual scene at the pixel level.
Existing AVS methods require fine-grained annotations of audio-mask pairs in supervised learning fashion.
We introduce unsupervised audio-visual segmentation with no need for task-specific data annotations and model training.
arXiv Detail & Related papers (2023-09-13T05:05:47Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
We propose two novel techniques to improve audio-visual speech recognition (AVSR) under a pre-training and fine-tuning training framework.
First, we explore the correlation between lip shapes and syllable-level subword units in Mandarin to establish good frame-level syllable boundaries from lip shapes.
Next, we propose an audio-guided cross-modal fusion encoder (CMFE) neural network to utilize main training parameters for multiple cross-modal attention layers.
arXiv Detail & Related papers (2023-08-14T08:19:24Z) - Diffusion Models for Open-Vocabulary Segmentation [79.02153797465324]
OVDiff is a novel method that leverages generative text-to-image diffusion models for unsupervised open-vocabulary segmentation.
It relies solely on pre-trained components and outputs the synthesised segmenter directly, without training.
arXiv Detail & Related papers (2023-06-15T17:51:28Z) - Diffusion Action Segmentation [63.061058214427085]
We propose a novel framework via denoising diffusion models, which shares the same inherent spirit of such iterative refinement.
In this framework, action predictions are iteratively generated from random noise with input video features as conditions.
arXiv Detail & Related papers (2023-03-31T10:53:24Z) - ASiT: Local-Global Audio Spectrogram vIsion Transformer for Event
Classification [42.95038619688867]
ASiT is a novel self-supervised learning framework that captures local and global contextual information by employing group masked model learning and self-distillation.
We evaluate our pretrained models on both audio and speech classification tasks, including audio event classification, keyword spotting, and speaker identification.
arXiv Detail & Related papers (2022-11-23T18:21:09Z) - Audio-Visual Scene Classification Using A Transfer Learning Based Joint
Optimization Strategy [26.975596225131824]
We propose a joint training framework, using the acoustic features and raw images directly as inputs for the AVSC task.
Specifically, we retrieve the bottom layers of pre-trained image models as visual encoder, and jointly optimize the scene classifier and 1D-CNN based acoustic encoder during training.
arXiv Detail & Related papers (2022-04-25T03:37:02Z) - Streaming end-to-end speech recognition with jointly trained neural
feature enhancement [20.86554979122057]
We present a streaming end-to-end speech recognition model based on Monotonic Chunkwise Attention (MoCha) jointly trained with enhancement layers.
We introduce two training strategies: Gradual Application of Enhanced Features (GAEF) and Gradual Reduction of Enhanced Loss (GREL)
arXiv Detail & Related papers (2021-05-04T02:25:41Z) - Deep Variational Generative Models for Audio-visual Speech Separation [33.227204390773316]
We propose an unsupervised technique based on audio-visual generative modeling of clean speech.
To better utilize the visual information, the posteriors of the latent variables are inferred from mixed speech.
Our experiments show that the proposed unsupervised VAE-based method yields better separation performance than NMF-based approaches.
arXiv Detail & Related papers (2020-08-17T10:12:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.