Generative modeling assisted simulation of measurement-altered quantum criticality
- URL: http://arxiv.org/abs/2412.01513v1
- Date: Mon, 02 Dec 2024 14:03:52 GMT
- Title: Generative modeling assisted simulation of measurement-altered quantum criticality
- Authors: Yuchen Zhu, Molei Tao, Yuebo Jin, Xie Chen,
- Abstract summary: We propose to use machine learning to assist the simulation of measurement-induced quantum phenomena.
We focus on the measurement-altered quantum criticality protocol and generate local reduced density matrices of the critical chain given random measurement results.
- Score: 13.6386318414559
- License:
- Abstract: In quantum many-body systems, measurements can induce qualitative new features, but their simulation is hindered by the exponential complexity involved in sampling the measurement results. We propose to use machine learning to assist the simulation of measurement-induced quantum phenomena. In particular, we focus on the measurement-altered quantum criticality protocol and generate local reduced density matrices of the critical chain given random measurement results. Such generation is enabled by a physics-preserving conditional diffusion generative model, which learns an observation-indexed probability distribution of an ensemble of quantum states, and then samples from that distribution given an observation.
Related papers
- Exact model reduction for discrete-time conditional quantum dynamics [0.0]
We propose a method to reduce the dimension of quantum filters in discrete-time, while maintaining the correct distributions on the measurement outcomes and the expectations of some relevant observable.
The method is presented for general quantum systems whose dynamics depend on measurement outcomes, hinges on a system-theoretic observability analysis, and is tested on examples.
arXiv Detail & Related papers (2024-03-19T09:34:13Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Inferring interpretable dynamical generators of local quantum
observables from projective measurements through machine learning [17.27816885271914]
We utilize a machine-learning approach to infer the dynamical generator governing the evolution of local observables in a many-body system from noisy data.
Our method is not only useful for extracting effective dynamical generators from many-body systems, but may also be applied for inferring decoherence mechanisms of quantum simulation and computing platforms.
arXiv Detail & Related papers (2023-06-06T18:01:18Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Importance sampling of randomized measurements for probing entanglement [0.0]
We show that combining randomized measurement protocols with importance sampling allows for characterizing entanglement in significantly larger quantum systems.
A drastic reduction of statistical errors is obtained using machine-learning and tensor networks using partial information on the quantum state.
arXiv Detail & Related papers (2021-02-26T14:55:53Z) - Programmable Quantum Annealers as Noisy Gibbs Samplers [10.154836127889487]
We study the sampling properties of physical realizations of quantum annealers implemented through programmable lattices of superconducting flux qubits.
We show that our methodology will find widespread use in characterization of future generations of quantum annealers and other emerging analog computing devices.
arXiv Detail & Related papers (2020-12-16T09:54:53Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.