論文の概要: Traversing the Subspace of Adversarial Patches
- arxiv url: http://arxiv.org/abs/2412.01527v1
- Date: Mon, 02 Dec 2024 14:19:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:45:03.599258
- Title: Traversing the Subspace of Adversarial Patches
- Title(参考訳): 逆パッチのサブスペースのトラバース
- Authors: Jens Bayer, Stefan Becker, David Münch, Michael Arens, Jürgen Beyerer,
- Abstract要約: 本稿では, 対向パッチの集合の解析を行い, 3つの異なる次元削減手法の再構築能力について検討する。
以上の結果から, より洗練された次元減少法は, 単純な主成分分析に勝るものではないことが示唆された。
- 参考スコア(独自算出の注目度): 10.018042416387296
- License:
- Abstract: Despite ongoing research on the topic of adversarial examples in deep learning for computer vision, some fundamentals of the nature of these attacks remain unclear. As the manifold hypothesis posits, high-dimensional data tends to be part of a low-dimensional manifold. To verify the thesis with adversarial patches, this paper provides an analysis of a set of adversarial patches and investigates the reconstruction abilities of three different dimensionality reduction methods. Quantitatively, the performance of reconstructed patches in an attack setting is measured and the impact of sampled patches from the latent space during adversarial training is investigated. The evaluation is performed on two publicly available datasets for person detection. The results indicate that more sophisticated dimensionality reduction methods offer no advantages over a simple principal component analysis.
- Abstract(参考訳): コンピュータビジョンの深層学習における敵対的事例の話題に関する研究が続いているが、これらの攻撃の性質のいくつかの基礎はいまだ不明である。
多様体仮説が仮定するにつれ、高次元データは低次元多様体の一部となる傾向にある。
本論文は, 対向パッチを用いた理論を検証するために, 対向パッチの集合の解析を行い, 3つの異なる次元削減手法の再構築能力について検討する。
攻撃条件下での再構成パッチの性能を定量的に測定し, 対向訓練における潜伏空間からのサンプルパッチの影響について検討した。
人検出のための2つの公開データセット上で評価を行う。
以上の結果から, より洗練された次元減少法は, 単純な主成分分析に勝るものではないことが示唆された。
関連論文リスト
- Singular Regularization with Information Bottleneck Improves Model's
Adversarial Robustness [30.361227245739745]
敵対的な例は、ディープラーニングモデルに対する最も深刻な脅威の1つです。
本研究では,非構造雑音として,明確なパターンを持たない逆情報について検討する。
本稿では,敵対情報を正規化し,情報ボトルネック理論を組み合わせるための新しいモジュールを提案する。
論文 参考訳(メタデータ) (2023-12-04T09:07:30Z) - ODDR: Outlier Detection & Dimension Reduction Based Defense Against Adversarial Patches [4.4100683691177816]
敵対的攻撃は、機械学習モデルの信頼性の高いデプロイに重大な課題をもたらす。
パッチベースの敵攻撃に対処するための総合的な防御戦略である外乱検出・次元削減(ODDR)を提案する。
提案手法は,逆パッチに対応する入力特徴を外れ値として同定できるという観測に基づいている。
論文 参考訳(メタデータ) (2023-11-20T11:08:06Z) - Beyond Empirical Risk Minimization: Local Structure Preserving
Regularization for Improving Adversarial Robustness [28.853413482357634]
局所構造保存(LSP)正則化は、学習された埋め込み空間における入力空間の局所構造を保存することを目的としている。
本研究では,学習した埋め込み空間における入力空間の局所構造を保存することを目的とした,新しい局所構造保存(LSP)正規化を提案する。
論文 参考訳(メタデータ) (2023-03-29T17:18:58Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - On the Real-World Adversarial Robustness of Real-Time Semantic
Segmentation Models for Autonomous Driving [59.33715889581687]
現実世界の敵対的な例(通常はパッチの形で)の存在は、安全クリティカルなコンピュータビジョンタスクにおけるディープラーニングモデルの使用に深刻な脅威をもたらす。
本稿では,異なる種類の対立パッチを攻撃した場合のセマンティックセグメンテーションモデルのロバスト性を評価する。
画素の誤分類を誘導する攻撃者の能力を改善するために, 新たな損失関数を提案する。
論文 参考訳(メタデータ) (2022-01-05T22:33:43Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Hard-label Manifolds: Unexpected Advantages of Query Efficiency for
Finding On-manifold Adversarial Examples [67.23103682776049]
画像分類モデルに対する最近のゼロオーダーのハードラベル攻撃は、ファーストオーダーのグラデーションレベルの代替品に匹敵する性能を示している。
最近、グラデーションレベルの設定では、通常の敵対的な例がデータ多様体から離れ、オンマニホールドの例が実際には一般化エラーであることが示されている。
雑音の多い多様体距離オラクルに基づく情報理論論的議論を提案し、敵の勾配推定を通じて多様体情報を漏洩させる。
論文 参考訳(メタデータ) (2021-03-04T20:53:06Z) - FADER: Fast Adversarial Example Rejection [19.305796826768425]
近年の防御は, 異なる層表現における正統な訓練試料からの異常な偏差を検出することにより, 対向的堅牢性を向上させることが示されている。
本稿では,検出に基づく手法を高速化する新しい手法であるFADERを紹介する。
実験では,MNISTデータセットの解析値と比較すると,最大73倍の試作機,CIFAR10の最大50倍の試作機について概説した。
論文 参考訳(メタデータ) (2020-10-18T22:00:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。