Effectiveness of L2 Regularization in Privacy-Preserving Machine Learning
- URL: http://arxiv.org/abs/2412.01541v1
- Date: Mon, 02 Dec 2024 14:31:11 GMT
- Title: Effectiveness of L2 Regularization in Privacy-Preserving Machine Learning
- Authors: Nikolaos Chandrinos, Iliana Loi, Panagiotis Zachos, Ioannis Symeonidis, Aristotelis Spiliotis, Maria Panou, Konstantinos Moustakas,
- Abstract summary: Well-performing models, the industry seeks, usually rely on a large volume of training data.
The use of such data raises serious privacy concerns due to the potential risks of leaks of highly sensitive information.
In this work, we compare the effectiveness of L2 regularization and differential privacy in mitigating Membership Inference Attack risks.
- Score: 1.4638393290666896
- License:
- Abstract: Artificial intelligence, machine learning, and deep learning as a service have become the status quo for many industries, leading to the widespread deployment of models that handle sensitive data. Well-performing models, the industry seeks, usually rely on a large volume of training data. However, the use of such data raises serious privacy concerns due to the potential risks of leaks of highly sensitive information. One prominent threat is the Membership Inference Attack, where adversaries attempt to deduce whether a specific data point was used in a model's training process. An adversary's ability to determine an individual's presence represents a significant privacy threat, especially when related to a group of users sharing sensitive information. Hence, well-designed privacy-preserving machine learning solutions are critically needed in the industry. In this work, we compare the effectiveness of L2 regularization and differential privacy in mitigating Membership Inference Attack risks. Even though regularization techniques like L2 regularization are commonly employed to reduce overfitting, a condition that enhances the effectiveness of Membership Inference Attacks, their impact on mitigating these attacks has not been systematically explored.
Related papers
- Lancelot: Towards Efficient and Privacy-Preserving Byzantine-Robust Federated Learning within Fully Homomorphic Encryption [10.685816010576918]
We propose Lancelot, an innovative and computationally efficient BRFL framework that employs fully homomorphic encryption (FHE) to safeguard against malicious client activities while preserving data privacy.
Our extensive testing, which includes medical imaging diagnostics and widely-used public image datasets, demonstrates that Lancelot significantly outperforms existing methods, offering more than a twenty-fold increase in processing speed, all while maintaining data privacy.
arXiv Detail & Related papers (2024-08-12T14:48:25Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
In this paper, we unveil a new vulnerability: the privacy backdoor attack.
When a victim fine-tunes a backdoored model, their training data will be leaked at a significantly higher rate than if they had fine-tuned a typical model.
Our findings highlight a critical privacy concern within the machine learning community and call for a reevaluation of safety protocols in the use of open-source pre-trained models.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Balancing Transparency and Risk: The Security and Privacy Risks of
Open-Source Machine Learning Models [31.658006126446175]
We present a comprehensive overview of common privacy and security threats associated with the use of open-source models.
By raising awareness of these dangers, we strive to promote the responsible and secure use of AI systems.
arXiv Detail & Related papers (2023-08-18T11:59:15Z) - White-box Inference Attacks against Centralized Machine Learning and
Federated Learning [0.0]
We evaluate the impact of different neural network layers, gradient, gradient norm, and fine-tuned models on member inference attack performance with prior knowledge.
The results show that the centralized machine learning model shows more serious member information leakage in all aspects.
arXiv Detail & Related papers (2022-12-15T07:07:19Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
We question whether the use of large Web-scraped datasets should be viewed as differential-privacy-preserving.
We caution that publicizing these models pretrained on Web data as "private" could lead to harm and erode the public's trust in differential privacy as a meaningful definition of privacy.
We conclude by discussing potential paths forward for the field of private learning, as public pretraining becomes more popular and powerful.
arXiv Detail & Related papers (2022-12-13T10:41:12Z) - On the Privacy Effect of Data Enhancement via the Lens of Memorization [20.63044895680223]
We propose to investigate privacy from a new perspective called memorization.
Through the lens of memorization, we find that previously deployed MIAs produce misleading results as they are less likely to identify samples with higher privacy risks.
We demonstrate that the generalization gap and privacy leakage are less correlated than those of the previous results.
arXiv Detail & Related papers (2022-08-17T13:02:17Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
Federated Learning (FL) allows the data owner to maintain data governance and perform model training locally without having to share their data.
FL and related techniques are often described as privacy-preserving.
We explain why this term is not appropriate and outline the risks associated with over-reliance on protocols that were not designed with formal definitions of privacy in mind.
arXiv Detail & Related papers (2021-12-21T08:44:05Z) - Evaluating Privacy-Preserving Machine Learning in Critical
Infrastructures: A Case Study on Time-Series Classification [5.607917328636864]
It is pivotal to ensure that neither the model nor the data can be used to extract sensitive information.
Various safety-critical use cases (mostly relying on time-series data) are currently underrepresented in privacy-related considerations.
By evaluating several privacy-preserving methods regarding their applicability on time-series data, we validated the inefficacy of encryption for deep learning.
arXiv Detail & Related papers (2021-11-29T12:28:22Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
This work systematically categorizes and discusses a wide range of dataset vulnerabilities and exploits.
In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.
arXiv Detail & Related papers (2020-12-18T22:38:47Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
This paper proposes a framework of Privacy-preserving Credit risk modeling based on Adversarial Learning (PCAL)
PCAL aims to mask the private information inside the original dataset, while maintaining the important utility information for the target prediction task performance.
Results indicate that PCAL can learn an effective, privacy-free representation from user data, providing a solid foundation towards privacy-preserving machine learning for credit risk analysis.
arXiv Detail & Related papers (2020-10-06T07:04:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.