Can We Afford The Perfect Prompt? Balancing Cost and Accuracy with the Economical Prompting Index
- URL: http://arxiv.org/abs/2412.01690v1
- Date: Mon, 02 Dec 2024 16:34:18 GMT
- Title: Can We Afford The Perfect Prompt? Balancing Cost and Accuracy with the Economical Prompting Index
- Authors: Tyler McDonald, Anthony Colosimo, Yifeng Li, Ali Emami,
- Abstract summary: We present the Economical Prompting Index (EPI), a novel metric that combines accuracy scores with token consumption.<n>Our study examines 6 advanced prompting techniques, including Chain-of-Thought, Self-Consistency, and Tree of Thoughts.
- Score: 5.714609806192087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As prompt engineering research rapidly evolves, evaluations beyond accuracy are crucial for developing cost-effective techniques. We present the Economical Prompting Index (EPI), a novel metric that combines accuracy scores with token consumption, adjusted by a user-specified cost concern level to reflect different resource constraints. Our study examines 6 advanced prompting techniques, including Chain-of-Thought, Self-Consistency, and Tree of Thoughts, across 10 widely-used language models and 4 diverse datasets. We demonstrate that approaches such as Self-Consistency often provide statistically insignificant gains while becoming cost-prohibitive. For example, on high-performing models like Claude 3.5 Sonnet, the EPI of simpler techniques like Chain-of-Thought (0.72) surpasses more complex methods like Self-Consistency (0.64) at slight cost concern levels. Our findings suggest a reevaluation of complex prompting strategies in resource-constrained scenarios, potentially reshaping future research priorities and improving cost-effectiveness for end-users.
Related papers
- Cost-of-Pass: An Economic Framework for Evaluating Language Models [25.152801302217693]
We introduce "cost-of-pass", the expected monetary cost of generating a correct solution.
We then define the "frontier cost-of-pass" as the minimum cost-of-pass achievable across available models or the "human-expert"
We find that innovations in lightweight, large, and reasoning models have been essential for pushing the frontier in basic quantitative, knowledge-intensive, and complex quantitative tasks.
arXiv Detail & Related papers (2025-04-17T21:58:29Z) - Predicting Liquidity-Aware Bond Yields using Causal GANs and Deep Reinforcement Learning with LLM Evaluation [0.0]
We generate high-fidelity synthetic bond yield data for four major bond categories (AAA, BAA, US10Y,)
We employ a finetuned Large Language Model (LLM) Qwen2.5-7B that generates trading signals, risk assessments, and volatility projections.
The reinforcement learning-enhanced synthetic data generation achieves the least Mean Absolute Error of 0.103, demonstrating its effectiveness in replicating real-world bond market dynamics.
arXiv Detail & Related papers (2025-02-24T09:46:37Z) - Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control [52.405085773954596]
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to mitigate large language model hallucinations.
Existing RAG frameworks often apply retrieval indiscriminately,leading to inefficiencies-over-retrieving.
We introduce a novel user-controllable RAG framework that enables dynamic adjustment of the accuracy-cost trade-off.
arXiv Detail & Related papers (2025-02-17T18:56:20Z) - CERET: Cost-Effective Extrinsic Refinement for Text Generation [14.43795791836198]
We propose CERET, a method for refining text generations by considering semantic stability, entailment and inter-sample uncertainty measures.
Experimental results show that CERET outperforms Self-consistency and Self-rerank baselines consistently under various task setups.
arXiv Detail & Related papers (2024-06-08T22:17:52Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement [50.62461749446111]
Self-Polish (SP) is a novel method that facilitates the model's reasoning by guiding it to progressively refine the given problems to be more comprehensible and solvable.
SP is to all other prompting methods of answer/reasoning side like CoT, allowing for seamless integration with state-of-the-art techniques for further improvement.
arXiv Detail & Related papers (2023-05-23T19:58:30Z) - Self-Evaluation Guided Beam Search for Reasoning [61.523627290397556]
We introduce a stepwise self-evaluation mechanism to guide and calibrate the reasoning process of Large Language Model (LLM)
We propose a decoding algorithm integrating the self-evaluation guidance via beam search.
Our approach surpasses the corresponding Codex-backboned baselines in few-shot accuracy by $6.34%$, $9.56%$, and $5.46%$ on the GSM8K, AQuA, and StrategyQA.
arXiv Detail & Related papers (2023-05-01T02:37:59Z) - Online Learning under Budget and ROI Constraints via Weak Adaptivity [57.097119428915796]
Existing primal-dual algorithms for constrained online learning problems rely on two fundamental assumptions.
We show how such assumptions can be circumvented by endowing standard primal-dual templates with weakly adaptive regret minimizers.
We prove the first best-of-both-worlds no-regret guarantees which hold in absence of the two aforementioned assumptions.
arXiv Detail & Related papers (2023-02-02T16:30:33Z) - Rethinking Cost-sensitive Classification in Deep Learning via
Adversarial Data Augmentation [4.479834103607382]
Cost-sensitive classification is critical in applications where misclassification errors widely vary in cost.
This paper proposes a cost-sensitive adversarial data augmentation framework to make over- parameterized models cost-sensitive.
Our method can effectively minimize the overall cost and reduce critical errors, while achieving comparable performance in terms of overall accuracy.
arXiv Detail & Related papers (2022-08-24T19:00:30Z) - A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
Adversarial Fine-tuning [90.44219200633286]
We propose a simple yet very effective adversarial fine-tuning approach based on a $textitslow start, fast decay$ learning rate scheduling strategy.
Experimental results show that the proposed adversarial fine-tuning approach outperforms the state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet datasets.
arXiv Detail & Related papers (2020-12-25T20:50:15Z) - Hierarchical Adaptive Contextual Bandits for Resource Constraint based
Recommendation [49.69139684065241]
Contextual multi-armed bandit (MAB) achieves cutting-edge performance on a variety of problems.
In this paper, we propose a hierarchical adaptive contextual bandit method (HATCH) to conduct the policy learning of contextual bandits with a budget constraint.
arXiv Detail & Related papers (2020-04-02T17:04:52Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
We propose a cost-sensitive portfolio selection method with deep reinforcement learning.
Specifically, a novel two-stream portfolio policy network is devised to extract both price series patterns and asset correlations.
A new cost-sensitive reward function is developed to maximize the accumulated return and constrain both costs via reinforcement learning.
arXiv Detail & Related papers (2020-03-06T06:28:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.