CERET: Cost-Effective Extrinsic Refinement for Text Generation
- URL: http://arxiv.org/abs/2406.05588v2
- Date: Sat, 02 Nov 2024 03:18:56 GMT
- Title: CERET: Cost-Effective Extrinsic Refinement for Text Generation
- Authors: Jason Cai, Hang Su, Monica Sunkara, Igor Shalyminov, Saab Mansour,
- Abstract summary: We propose CERET, a method for refining text generations by considering semantic stability, entailment and inter-sample uncertainty measures.
Experimental results show that CERET outperforms Self-consistency and Self-rerank baselines consistently under various task setups.
- Score: 14.43795791836198
- License:
- Abstract: Large Language Models (LLMs) are powerful models for generation tasks, but they may not generate good quality outputs in their first attempt. Apart from model fine-tuning, existing approaches to improve prediction accuracy and quality typically involve LLM self-improvement / self-reflection that incorporate feedback from models themselves. Despite their effectiveness, these methods are hindered by their high computational cost and lack of scalability. In this work, we propose CERET, a method for refining text generations by considering semantic stability, entailment and inter-sample uncertainty measures. Experimental results show that CERET outperforms Self-consistency and Self-rerank baselines consistently under various task setups, by ~1.6% in Rouge-1 for abstractive summarization and ~3.5% in hit rate for question answering. Compared to LLM Self-rerank method, our approach only requires 9.4% of its latency and is more cost-effective.
Related papers
- S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.
Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.
LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.
We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - SMARTCAL: An Approach to Self-Aware Tool-Use Evaluation and Calibration [24.739131794947838]
We conduct a study on a family of state-of-the-art Large Language Models (LLMs) on three datasets with two mainstream tool-use frameworks.
Our study reveals the tool-abuse behavior of LLMs, a tendency for models to misuse tools with overconfidence.
We propose a novel approach, textitCAL, to mitigate the observed issues.
arXiv Detail & Related papers (2024-12-11T06:09:12Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.
Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.
We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - Efficient Self-Improvement in Multimodal Large Language Models: A Model-Level Judge-Free Approach [31.654345704242512]
This paper introduces a novel, model-level judge-free self-improvement framework.
Our approach employs a controlled feedback mechanism while eliminating the need for MLLMs in the verification loop.
We achieve superior precision and recall with significantly lower computational demands.
arXiv Detail & Related papers (2024-11-26T00:44:37Z) - Advancing the Robustness of Large Language Models through Self-Denoised Smoothing [50.54276872204319]
Large language models (LLMs) have achieved significant success, but their vulnerability to adversarial perturbations has raised considerable concerns.
We propose to leverage the multitasking nature of LLMs to first denoise the noisy inputs and then to make predictions based on these denoised versions.
Unlike previous denoised smoothing techniques in computer vision, which require training a separate model to enhance the robustness of LLMs, our method offers significantly better efficiency and flexibility.
arXiv Detail & Related papers (2024-04-18T15:47:00Z) - Calibrating Long-form Generations from Large Language Models [34.72041258464477]
Large Language Models' (LLMs) confidence scores should align with the actual likelihood of its responses being correct.
Current confidence elicitation methods and calibration metrics rely on a binary true/false assessment of response correctness.
We introduce a unified calibration framework, in which both the correctness of the LLMs' responses and their associated confidence levels are treated as distributions across a range of scores.
arXiv Detail & Related papers (2024-02-09T17:00:32Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Democratizing LLMs: An Exploration of Cost-Performance Trade-offs in
Self-Refined Open-Source Models [53.859446823312126]
SoTA open source models of varying sizes from 7B - 65B, on average, improve 8.2% from their baseline performance.
Strikingly, even models with extremely small memory footprints, such as Vicuna-7B, show a 11.74% improvement overall and up to a 25.39% improvement in high-creativity, open ended tasks.
arXiv Detail & Related papers (2023-10-11T15:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.