HUGSIM: A Real-Time, Photo-Realistic and Closed-Loop Simulator for Autonomous Driving
- URL: http://arxiv.org/abs/2412.01718v1
- Date: Mon, 02 Dec 2024 17:07:59 GMT
- Title: HUGSIM: A Real-Time, Photo-Realistic and Closed-Loop Simulator for Autonomous Driving
- Authors: Hongyu Zhou, Longzhong Lin, Jiabao Wang, Yichong Lu, Dongfeng Bai, Bingbing Liu, Yue Wang, Andreas Geiger, Yiyi Liao,
- Abstract summary: HUGSIM is a closed-loop, photo-realistic, and real-time simulator for evaluating autonomous driving algorithms.
We tackle challenges of novel view synthesis in closed-loop scenarios, including viewpoint extrapolation and 360-degree vehicle rendering.
HUGSIM offers a comprehensive benchmark across more than 70 sequences from KITTI-360, nuScenes, and PandaSet, along with over 400 varying scenarios.
- Score: 48.84595398410479
- License:
- Abstract: In the past few decades, autonomous driving algorithms have made significant progress in perception, planning, and control. However, evaluating individual components does not fully reflect the performance of entire systems, highlighting the need for more holistic assessment methods. This motivates the development of HUGSIM, a closed-loop, photo-realistic, and real-time simulator for evaluating autonomous driving algorithms. We achieve this by lifting captured 2D RGB images into the 3D space via 3D Gaussian Splatting, improving the rendering quality for closed-loop scenarios, and building the closed-loop environment. In terms of rendering, We tackle challenges of novel view synthesis in closed-loop scenarios, including viewpoint extrapolation and 360-degree vehicle rendering. Beyond novel view synthesis, HUGSIM further enables the full closed simulation loop, dynamically updating the ego and actor states and observations based on control commands. Moreover, HUGSIM offers a comprehensive benchmark across more than 70 sequences from KITTI-360, Waymo, nuScenes, and PandaSet, along with over 400 varying scenarios, providing a fair and realistic evaluation platform for existing autonomous driving algorithms. HUGSIM not only serves as an intuitive evaluation benchmark but also unlocks the potential for fine-tuning autonomous driving algorithms in a photorealistic closed-loop setting.
Related papers
- Bench2Drive-R: Turning Real World Data into Reactive Closed-Loop Autonomous Driving Benchmark by Generative Model [63.336123527432136]
We introduce Bench2Drive-R, a generative framework that enables reactive closed-loop evaluation.
Unlike existing video generative models for autonomous driving, the proposed designs are tailored for interactive simulation.
We compare the generation quality of Bench2Drive-R with existing generative models and achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-12-11T06:35:18Z) - DrivingSphere: Building a High-fidelity 4D World for Closed-loop Simulation [54.02069690134526]
We propose DrivingSphere, a realistic and closed-loop simulation framework.
Its core idea is to build 4D world representation and generate real-life and controllable driving scenarios.
By providing a dynamic and realistic simulation environment, DrivingSphere enables comprehensive testing and validation of autonomous driving algorithms.
arXiv Detail & Related papers (2024-11-18T03:00:33Z) - AutoSplat: Constrained Gaussian Splatting for Autonomous Driving Scene Reconstruction [17.600027937450342]
AutoSplat is a framework employing Gaussian splatting to achieve highly realistic reconstructions of autonomous driving scenes.
Our method enables multi-view consistent simulation of challenging scenarios including lane changes.
arXiv Detail & Related papers (2024-07-02T18:36:50Z) - CADSim: Robust and Scalable in-the-wild 3D Reconstruction for
Controllable Sensor Simulation [44.83732884335725]
Sensor simulation involves modeling traffic participants, such as vehicles, with high quality appearance and articulated geometry.
Current reconstruction approaches struggle on in-the-wild sensor data, due to its sparsity and noise.
We present CADSim, which combines part-aware object-class priors via a small set of CAD models with differentiable rendering to automatically reconstruct vehicle geometry.
arXiv Detail & Related papers (2023-11-02T17:56:59Z) - Sim-to-Real via Sim-to-Seg: End-to-end Off-road Autonomous Driving
Without Real Data [56.49494318285391]
We present Sim2Seg, a re-imagining of RCAN that crosses the visual reality gap for off-road autonomous driving.
This is done by learning to translate randomized simulation images into simulated segmentation and depth maps.
This allows us to train an end-to-end RL policy in simulation, and directly deploy in the real-world.
arXiv Detail & Related papers (2022-10-25T17:50:36Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
We present VISTA, an open source, data-driven simulator that integrates multiple types of sensors for autonomous vehicles.
Using high fidelity, real-world datasets, VISTA represents and simulates RGB cameras, 3D LiDAR, and event-based cameras.
We demonstrate the ability to train and test perception-to-control policies across each of the sensor types and showcase the power of this approach via deployment on a full scale autonomous vehicle.
arXiv Detail & Related papers (2021-11-23T18:58:10Z) - LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World [84.57894492587053]
We develop a novel simulator that captures both the power of physics-based and learning-based simulation.
We first utilize ray casting over the 3D scene and then use a deep neural network to produce deviations from the physics-based simulation.
We showcase LiDARsim's usefulness for perception algorithms-testing on long-tail events and end-to-end closed-loop evaluation on safety-critical scenarios.
arXiv Detail & Related papers (2020-06-16T17:44:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.