FERERO: A Flexible Framework for Preference-Guided Multi-Objective Learning
- URL: http://arxiv.org/abs/2412.01773v1
- Date: Mon, 02 Dec 2024 18:21:16 GMT
- Title: FERERO: A Flexible Framework for Preference-Guided Multi-Objective Learning
- Authors: Lisha Chen, AFM Saif, Yanning Shen, Tianyi Chen,
- Abstract summary: We introduce a Flexible framEwork for pREfeRence-guided multi-Objective learning (FERERO)
To solve this problem, convergent algorithms are developed with both single-loop and primal variants.
Experiments on multiple benchmarks demonstrate the proposed method is very competitive in finding preference-guided optimal solutions.
- Score: 41.95837632934815
- License:
- Abstract: Finding specific preference-guided Pareto solutions that represent different trade-offs among multiple objectives is critical yet challenging in multi-objective problems. Existing methods are restrictive in preference definitions and/or their theoretical guarantees. In this work, we introduce a Flexible framEwork for pREfeRence-guided multi-Objective learning (FERERO) by casting it as a constrained vector optimization problem. Specifically, two types of preferences are incorporated into this formulation -- the relative preference defined by the partial ordering induced by a polyhedral cone, and the absolute preference defined by constraints that are linear functions of the objectives. To solve this problem, convergent algorithms are developed with both single-loop and stochastic variants. Notably, this is the first single-loop primal algorithm for constrained vector optimization to our knowledge. The proposed algorithms adaptively adjust to both constraint and objective values, eliminating the need to solve different subproblems at different stages of constraint satisfaction. Experiments on multiple benchmarks demonstrate the proposed method is very competitive in finding preference-guided optimal solutions. Code is available at https://github.com/lisha-chen/FERERO/.
Related papers
- Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
Sequentially solving similar optimization problems under strict runtime constraints is essential for many applications.
We propose learning to predict emphmultiple diverse initial solutions given parameters that define the problem instance.
We find significant and consistent improvement with our method across all evaluation settings and demonstrate that it efficiently scales with the number of initial solutions required.
arXiv Detail & Related papers (2024-11-04T15:17:19Z) - Preference-Optimized Pareto Set Learning for Blackbox Optimization [1.9628841617148691]
No single solution exists that can optimize all the objectives simultaneously.
In a typical MOO problem, the goal is to find a set of optimum solutions (Pareto set) that trades off the preferences among objectives.
Our formulation leads to a bilevel optimization problem that can be solved by e.g. differentiable cross-entropy methods.
arXiv Detail & Related papers (2024-08-19T13:23:07Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Optimization on Pareto sets: On a theory of multi-objective optimization [7.907376287850398]
In multi-objective optimization, a single decision vector must balance the trade-offs between many objectives.
We consider a more practically significant optimization problem, where the goal is to optimize a constrained set.
arXiv Detail & Related papers (2023-08-04T05:55:52Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Pareto Navigation Gradient Descent: a First-Order Algorithm for
Optimization in Pareto Set [17.617944390196286]
Modern machine learning applications, such as multi-task learning, require finding optimal model parameters to trade-off multiple objective functions.
We propose a first-order algorithm that approximately solves OPT-in-Pareto using only gradient information.
arXiv Detail & Related papers (2021-10-17T04:07:04Z) - On Constraints in First-Order Optimization: A View from Non-Smooth
Dynamical Systems [99.59934203759754]
We introduce a class of first-order methods for smooth constrained optimization.
Two distinctive features of our approach are that projections or optimizations over the entire feasible set are avoided.
The resulting algorithmic procedure is simple to implement even when constraints are nonlinear.
arXiv Detail & Related papers (2021-07-17T11:45:13Z) - A Hybrid 2-stage Neural Optimization for Pareto Front Extraction [3.918940900258555]
A major obstacle to optimal trade-off solutions is that they don't always converge to each other.
We propose a two-stage approach that is accurate and cost-effective.
arXiv Detail & Related papers (2021-01-27T20:56:19Z) - Ensuring smoothly navigable approximation sets by Bezier curve
parameterizations in evolutionary bi-objective optimization -- applied to
brachytherapy treatment planning for prostate cancer [0.0]
We study the case of parameterizing approximation sets as smooth Bezier curves in decision space.
We show that high-quality approximation sets can be obtained with BezEA, sometimes even outperforming the domination- and UHV-based algorithms.
arXiv Detail & Related papers (2020-06-11T13:57:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.