論文の概要: Efficient Semantic Communication Through Transformer-Aided Compression
- arxiv url: http://arxiv.org/abs/2412.01817v1
- Date: Mon, 02 Dec 2024 18:57:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:47:21.806269
- Title: Efficient Semantic Communication Through Transformer-Aided Compression
- Title(参考訳): 変圧器支援圧縮による効率的な意味コミュニケーション
- Authors: Matin Mortaheb, Mohammad A. Amir Khojastepour, Sennur Ulukus,
- Abstract要約: セマンティックコミュニケーションのためのチャネル対応適応フレームワークを提案する。
視覚変換器を用いて、パッチの意味的内容の尺度として注意マスクを解釈する。
本手法は,エンコード解像度をコンテンツ関連性に適応させることで通信効率を向上させる。
- 参考スコア(独自算出の注目度): 31.285983939625098
- License:
- Abstract: Transformers, known for their attention mechanisms, have proven highly effective in focusing on critical elements within complex data. This feature can effectively be used to address the time-varying channels in wireless communication systems. In this work, we introduce a channel-aware adaptive framework for semantic communication, where different regions of the image are encoded and compressed based on their semantic content. By employing vision transformers, we interpret the attention mask as a measure of the semantic contents of the patches and dynamically categorize the patches to be compressed at various rates as a function of the instantaneous channel bandwidth. Our method enhances communication efficiency by adapting the encoding resolution to the content's relevance, ensuring that even in highly constrained environments, critical information is preserved. We evaluate the proposed adaptive transmission framework using the TinyImageNet dataset, measuring both reconstruction quality and accuracy. The results demonstrate that our approach maintains high semantic fidelity while optimizing bandwidth, providing an effective solution for transmitting multi-resolution data in limited bandwidth conditions.
- Abstract(参考訳): 注意機構で知られるトランスフォーマーは、複雑なデータ内の重要な要素に焦点を合わせるのに非常に効果的であることが証明されている。
この機能は、無線通信システムにおける時間変化チャネルに効果的に対応できる。
本研究では,その意味的内容に基づいて,画像の異なる領域をエンコードして圧縮する,意味的コミュニケーションのためのチャネル対応適応フレームワークを提案する。
視覚変換器を用いることで、注目マスクをパッチの意味的内容の尺度として解釈し、各レートで圧縮されるパッチを瞬時チャネル帯域幅の関数として動的に分類する。
本手法は,コンテンツ関連性に符号化解像度を適用することで通信効率を向上し,高度に制約された環境においても重要な情報が保存されることを保証する。
提案手法をTinyImageNetデータセットを用いて評価し,再現性と精度を両立させた。
提案手法は,帯域幅を最適化しながら高いセマンティック忠実度を維持し,帯域幅に制限のあるマルチレゾリューションデータを伝送するための有効なソリューションを提供する。
関連論文リスト
- Take What You Need: Flexible Multi-Task Semantic Communications with Channel Adaptation [51.53221300103261]
本稿では,マスク付きオートエンコーダアーキテクチャに基づく,チャネル適応型・マルチタスク対応のセマンティックコミュニケーションフレームワークについて紹介する。
チャネル認識抽出器を用いて、リアルタイムのチャネル条件に応じて、関連情報を動的に選択する。
画像再構成や物体検出などのタスクにおける従来の手法と比較して,本手法の優れた性能を示す実験結果が得られた。
論文 参考訳(メタデータ) (2025-02-12T09:01:25Z) - Semantic Communication based on Generative AI: A New Approach to Image Compression and Edge Optimization [1.450405446885067]
この論文は、最適化された画像圧縮とエッジネットワークリソース割り当てのための意味コミュニケーションと生成モデルを統合する。
通信インフラは、帯域幅効率とレイテンシーの大幅な改善の恩恵を受けることができる。
その結果、生成AIとセマンティックコミュニケーションを組み合わせて、より効率的なセマンティックゴール指向のコミュニケーションネットワークを構築する可能性を実証した。
論文 参考訳(メタデータ) (2025-02-01T21:48:31Z) - Vision Transformer-based Semantic Communications With Importance-Aware Quantization [13.328970689723096]
本稿では、無線画像伝送のための重要量化(IAQ)を用いた視覚変換器(ViT)に基づくセマンティック通信システムを提案する。
筆者らのIAQフレームワークは, エラーのない, 現実的な通信シナリオにおいて, 従来の画像圧縮手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-12-08T19:24:47Z) - Deep Joint Semantic Coding and Beamforming for Near-Space Airship-Borne Massive MIMO Network [70.63240823677182]
近距離飛行船搭載通信網は、緊急に信頼性と効率のよい飛行船対Xリンクを必要とする。
本稿では,MIMO(Multiple-Input multiple-output)技術とセマンティックコミュニケーションを統合することを提案する。
論文 参考訳(メタデータ) (2024-05-30T09:46:59Z) - Transformer-Aided Semantic Communications [28.63893944806149]
我々は、入力画像の圧縮とコンパクトな表現のために、視覚変換器を用いる。
変圧器固有のアテンション機構を用いることで、アテンションマスクを作成する。
提案手法の有効性をTinyImageNetデータセットを用いて評価した。
論文 参考訳(メタデータ) (2024-05-02T17:50:53Z) - Scalable AI Generative Content for Vehicular Network Semantic
Communication [46.589349524682966]
本稿では,エンコーダ・デコーダアーキテクチャを活用したスケーラブルな人工知能生成コンテンツ(AIGC)システムについて紹介する。
本システムは,画像をテキスト表現に変換し,品質を許容する画像に再構成し,車載ネットワークセマンティック通信の伝送を最適化する。
実験結果から,提案手法は盲点における車両の認識基準を超越し,通信データを効果的に圧縮することが示唆された。
論文 参考訳(メタデータ) (2023-11-23T02:57:04Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
IoTデバイスを用いたマルチタスク分散画像伝送のためのFederated Learning-based semantic communication (FLSC)フレームワーク。
各リンクは階層型視覚変換器(HVT)ベースの抽出器とタスク適応トランスレータで構成される。
チャネル状態情報に基づく多重出力多重出力伝送モジュール。
論文 参考訳(メタデータ) (2023-08-07T16:32:14Z) - Alignment-free HDR Deghosting with Semantics Consistent Transformer [76.91669741684173]
高ダイナミックレンジイメージングは、複数の低ダイナミックレンジ入力から情報を取得し、リアルな出力を生成することを目的としている。
既存の手法では、前景やカメラの動きによって引き起こされる入力フレーム間の空間的ずれに焦点を当てることが多い。
本研究では,SCTNet(Semantics Consistent Transformer)を用いたアライメントフリーネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T15:03:23Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
トランスフォーマーに基づく手法は、単一画像超解像(SISR)タスクにおいて顕著な性能を示した。
動的に特徴を抽出するために文脈情報を組み込む必要がある変換器は無視される。
我々は,CNNとTransformerを混合したCTブロックのカスケードで構成される,軽量なクロスレセプティブ・フォーカスド・推論・ネットワーク(CFIN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T16:32:29Z) - Learning Task-Oriented Communication for Edge Inference: An Information
Bottleneck Approach [3.983055670167878]
ローエンドエッジ装置は、ローカルデータサンプルの抽出された特徴ベクトルを強力なエッジサーバに送信して処理する。
帯域幅が限られているため、データを低遅延推論のための情報的かつコンパクトな表現に符号化することが重要である。
特徴抽出,ソース符号化,チャネル符号化を協調的に最適化する学習型通信方式を提案する。
論文 参考訳(メタデータ) (2021-02-08T12:53:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。