VLsI: Verbalized Layers-to-Interactions from Large to Small Vision Language Models
- URL: http://arxiv.org/abs/2412.01822v1
- Date: Mon, 02 Dec 2024 18:58:25 GMT
- Title: VLsI: Verbalized Layers-to-Interactions from Large to Small Vision Language Models
- Authors: Byung-Kwan Lee, Ryo Hachiuma, Yu-Chiang Frank Wang, Yong Man Ro, Yueh-Hua Wu,
- Abstract summary: We propose VLsI: Verbalized Layers-to-Interactions, a new VLM family in 2B and 7B model sizes.
We validate VLsI across ten challenging vision-language benchmarks, achieving notable performance gains (11.0% for 2B and 17.4% for 7B) over GPT-4V.
- Score: 63.27511432647797
- License:
- Abstract: The recent surge in high-quality visual instruction tuning samples from closed-source vision-language models (VLMs) such as GPT-4V has accelerated the release of open-source VLMs across various model sizes. However, scaling VLMs to improve performance using larger models brings significant computational challenges, especially for deployment on resource-constrained devices like mobile platforms and robots. To address this, we propose VLsI: Verbalized Layers-to-Interactions, a new VLM family in 2B and 7B model sizes, which prioritizes efficiency without compromising accuracy. VLsI leverages a unique, layer-wise distillation process, introducing intermediate "verbalizers" that map features from each layer to natural language space, allowing smaller VLMs to flexibly align with the reasoning processes of larger VLMs. This approach mitigates the training instability often encountered in output imitation and goes beyond typical final-layer tuning by aligning the small VLMs' layer-wise progression with that of the large ones. We validate VLsI across ten challenging vision-language benchmarks, achieving notable performance gains (11.0% for 2B and 17.4% for 7B) over GPT-4V without the need for model scaling, merging, or architectural changes.
Related papers
- ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VL is an efficient vision-language method that tunes models based on pretrained large language models.
Our framework surpasses existing methods by an average accuracy of 0.77% on ScienceQA dataset.
arXiv Detail & Related papers (2024-10-23T11:31:06Z) - Mini-InternVL: A Flexible-Transfer Pocket Multimodal Model with 5% Parameters and 90% Performance [78.48606021719206]
Mini-InternVL is a series of MLLMs with parameters ranging from 1B to 4B, which achieves 90% of the performance with only 5% of the parameters.
We develop a unified adaptation framework for Mini-InternVL, which enables our models to transfer and outperform specialized models in downstream tasks.
arXiv Detail & Related papers (2024-10-21T17:58:20Z) - VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks [60.5257456681402]
We study the potential for building universal embeddings capable of handling a wide range of downstream tasks.
We build a series of VLM2Vec models on SoTA VLMs like Phi-3.5-V, LLaVA-1.6 and evaluate them on MMEB's evaluation split.
Our results show that VLM2Vec achieves an absolute average improvement of 10% to 20% over existing multimodal embedding models.
arXiv Detail & Related papers (2024-10-07T16:14:05Z) - TinyVLA: Towards Fast, Data-Efficient Vision-Language-Action Models for Robotic Manipulation [32.406783380729024]
Vision-Language-Action (VLA) models have shown remarkable potential in visuomotor control and instruction comprehension through end-to-end learning processes.
Current VLA models face significant challenges: they are slow during inference and require extensive pre-training on large amounts of robotic data.
We introduce a new family of compact vision-language-action models, called TinyVLA, which offers two key advantages over existing VLA models.
arXiv Detail & Related papers (2024-09-19T07:10:18Z) - OpenVLA: An Open-Source Vision-Language-Action Model [131.74098076670103]
We introduce OpenVLA, an open-source VLA trained on a diverse collection of 970k real-world robot demonstrations.
OpenVLA shows strong results for generalist manipulation, outperforming closed models such as RT-2-X (55B) by 16.5% in absolute task success rate.
We release model checkpoints, fine-tuning notebooks, and our PyTorch with built-in support for training VLAs at scale on Open X-Embodiment datasets.
arXiv Detail & Related papers (2024-06-13T15:46:55Z) - An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models [65.37846460916042]
We find out that the attention computation over visual tokens is of extreme inefficiency in the deep layers of popular LVLMs.
We introduce FastV, a versatile plug-and-play method designed to optimize computational efficiency.
arXiv Detail & Related papers (2024-03-11T14:35:32Z) - Self-Adapting Large Visual-Language Models to Edge Devices across Visual Modalities [11.53488611812612]
Recent advancements in Vision-Language (VL) models have sparked interest in their deployment on edge devices.
We introduce EdgeVL, a novel framework that seamlessly integrates dual-modality knowledge distillation and quantization-aware contrastive learning.
Our work represents the first systematic effort to adapt large VL models for edge deployment, showcasing up to 15.4% accuracy improvements on multiple datasets and up to 93-fold reduction in model size.
arXiv Detail & Related papers (2024-03-07T21:34:40Z) - EfficientVLM: Fast and Accurate Vision-Language Models via Knowledge
Distillation and Modal-adaptive Pruning [19.354515754130592]
We introduce a distilling then pruning framework to compress large vision-language models into smaller, faster, and more accurate ones.
We apply our framework to train EfficientVLM, a fast and accurate vision-language model consisting of 6 vision layers, 3 text layers, and 3 cross-modal fusion layers.
EfficientVLM retains 98.4% performance of the teacher model and accelerates its inference speed by 2.2x.
arXiv Detail & Related papers (2022-10-14T13:26:41Z) - An Empirical Study of Training End-to-End Vision-and-Language
Transformers [50.23532518166621]
We present METER(textbfMultimodal textbfEnd-to-end textbfTransformtextbfER), through which we investigate how to design and pre-train a fully transformer-based VL model.
Specifically, we dissect the model designs along multiple dimensions: vision encoders (e.g., CLIP-ViT, Swin transformer), text encoders (e.g., RoBERTa, DeBERTa), multimodal fusion (e.g., merged attention vs. co-
arXiv Detail & Related papers (2021-11-03T17:55:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.