論文の概要: Towards Data-centric Machine Learning on Directed Graphs: a Survey
- arxiv url: http://arxiv.org/abs/2412.01849v1
- Date: Thu, 28 Nov 2024 06:09:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:47:42.661367
- Title: Towards Data-centric Machine Learning on Directed Graphs: a Survey
- Title(参考訳): 方向性グラフによるデータ中心型機械学習への取り組み
- Authors: Henan Sun, Xunkai Li, Daohan Su, Junyi Han, Rong-Hua Li, Guoren Wang,
- Abstract要約: 本稿では,有向グラフ学習研究のための新しい分類法を提案する。
我々はこれらの手法をデータ中心の観点から再検討し、データ表現の理解と改善に重点を置いている。
我々はこの分野における主要な機会と課題を特定し、有向グラフ学習における将来の研究と開発を導く洞察を提供する。
- 参考スコア(独自算出の注目度): 23.498557237805414
- License:
- Abstract: In recent years, Graph Neural Networks (GNNs) have made significant advances in processing structured data. However, most of them primarily adopted a model-centric approach, which simplifies graphs by converting it into undirected formats and emphasizes model designs. This approach is inherently constrained in real-world applications due to inevitable information loss in simple undirected graphs and data-driven model optimization dilemmas associated with exceeding the upper bounds of representational capacity. As a result, there has been a shift toward data-centric methods that prioritize improving graph quality and representation. Specifically, various types of graphs can be derived from naturally structured data, including heterogeneous graphs, hypergraphs, and directed graphs. Among these, directed graphs offer distinct advantages in topological systems by modeling causal relationships, and directed GNNs have been extensively studied in recent years. However, a comprehensive survey of this emerging topic is still lacking. Therefore, we aim to provide a comprehensive review of directed graph learning, with a particular focus on a data-centric perspective. Specifically, we first introduce a novel taxonomy for existing studies. Subsequently, we re-examine these methods from the data-centric perspective, with an emphasis on understanding and improving data representation. It demonstrates that a deep understanding of directed graphs and its quality plays a crucial role in model performance. Additionally, we explore the diverse applications of directed GNNs across 10+ domains, highlighting their broad applicability. Finally, we identify key opportunities and challenges within the field, offering insights that can guide future research and development in directed graph learning.
- Abstract(参考訳): 近年、グラフニューラルネットワーク(GNN)は構造化データ処理において大きな進歩を遂げている。
しかし、そのほとんどはモデル中心のアプローチを採用しており、これはグラフを非方向のフォーマットに変換し、モデル設計を強調することでグラフを単純化する。
このアプローチは、単純無向グラフにおける避けられない情報損失と、表現能力の上限を超えるデータ駆動モデル最適化ジレンマにより、現実のアプリケーションにおいて本質的に制約されている。
その結果、グラフの品質と表現の向上を優先するデータ中心の手法にシフトした。
具体的には、不均一グラフ、ハイパーグラフ、有向グラフなど、自然に構造化されたデータから様々な種類のグラフを導出することができる。
これらのうち、有向グラフは因果関係をモデル化することによってトポロジカルシステムにおいて明確な優位性を提供し、近年、有向グラフは広範囲に研究されている。
しかし、この新興トピックに関する包括的な調査は、まだ不十分である。
そこで本研究では,データ中心の視点に特化して,有向グラフ学習を包括的に検討することを目的とする。
具体的には,既存の研究に新しい分類法を最初に導入する。
その後、これらの手法をデータ中心の観点から再検討し、データ表現の理解と改善に重点を置いている。
これは、有向グラフとその品質の深い理解が、モデルパフォーマンスにおいて重要な役割を担っていることを示している。
さらに,10以上のドメインにまたがる指向性GNNの多種多様な応用について検討し,その適用性を強調した。
最後に、この分野における主要な機会と課題を特定し、有向グラフ学習における将来の研究と開発を導く洞察を提供する。
関連論文リスト
- Self-Supervised Graph Neural Networks for Enhanced Feature Extraction in Heterogeneous Information Networks [16.12856816023414]
本稿では,インターネットの急速な発展に伴う複雑なグラフデータ処理におけるグラフニューラルネットワーク(GNN)の適用と課題について考察する。
自己監督機構を導入することにより、グラフデータの多様性と複雑さに対する既存モデルの適合性を向上させることが期待されている。
論文 参考訳(メタデータ) (2024-10-23T07:14:37Z) - Parametric Graph Representations in the Era of Foundation Models: A Survey and Position [69.48708136448694]
グラフは、包括的なリレーショナルデータをモデル化するために、過去数十年間、ビッグデータとAIで広く使われてきた。
有意義なグラフ法則の同定は、様々な応用の有効性を著しく向上させることができる。
論文 参考訳(メタデータ) (2024-10-16T00:01:31Z) - Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
大規模"事前訓練と迅速な学習"パラダイムは、顕著な適応性を示している。
この調査は、この分野における100以上の関連する研究を分類し、一般的な設計原則と最新の応用を要約する。
論文 参考訳(メタデータ) (2024-08-26T06:36:42Z) - A Survey of Data-Efficient Graph Learning [16.053913182723143]
研究フロンティアとして,データ効率グラフ学習(DEGL)の新たな概念を紹介した。
我々は、自己教師付きグラフ学習、半教師付きグラフ学習、少数ショットグラフ学習など、いくつかの重要な側面に関する最近の進歩を体系的にレビューした。
論文 参考訳(メタデータ) (2024-02-01T09:28:48Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
基礎モデルがグラフ機械学習研究者を一般化し、適応させる能力は、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - Data-centric Graph Learning: A Survey [37.849198493911736]
本稿では,グラフ学習パイプラインの段階に基づく新しい分類法を提案する。
グラフデータに埋め込まれた潜在的な問題を解析し、それをデータ中心の方法で解決する方法について議論する。
論文 参考訳(メタデータ) (2023-10-08T03:17:22Z) - Towards Data-centric Graph Machine Learning: Review and Outlook [120.64417630324378]
データ中心グラフ機械学習(DC-GML)という,グラフデータライフサイクルのすべての段階を包含する体系的なフレームワークを導入する。
各段階の完全な分類法が示され、3つの重要なグラフ中心の質問に答える。
我々は、DC-GMLドメインの将来展望を指摘し、その進歩と応用をナビゲートするための洞察を提供する。
論文 参考訳(メタデータ) (2023-09-20T00:40:13Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
まず,グラフデータ拡張のための分類法を提案し,その拡張情報モダリティに基づいて関連研究を分類し,構造化されたレビューを提供する。
DGLにおける2つの課題(すなわち、最適グラフ学習と低リソースグラフ学習)に焦点を当て、グラフデータ拡張に基づく既存の学習パラダイムについて議論し、レビューする。
論文 参考訳(メタデータ) (2022-02-16T18:30:33Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。