Quantum circuit synthesis with qudit phase gadget method
- URL: http://arxiv.org/abs/2504.12710v1
- Date: Thu, 17 Apr 2025 07:26:33 GMT
- Title: Quantum circuit synthesis with qudit phase gadget method
- Authors: Shuai Yang, Lihao Xu, Guojing Tian, Xiaoming Sun,
- Abstract summary: We propose a novel qudit phase gadget method for the synthesizing qudit diagonal unitary matrices.<n>This method is suitable for the Noisy Intermediate-Scale Quantum (NISQ) and fault-tolerant eras.<n>For a 10-qutrit diagonal unitary, our algorithm reduces the circuit depth form about 100000 to 500 with 300 ancillary qutrits.
- Score: 12.51731919903278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current quantum devices have unutilized high-level quantum resources. More and more attention has been paid to the qudit quantum systems with larger than two dimensions to maximize the potential computing power of quantum computation. Then, a natural problem arises: How do we implement quantum algorithms on qudit quantum systems? In this work, we propose a novel qudit phase gadget method for synthesizing the qudit diagonal unitary matrices. This method is suitable for the Noisy Intermediate-Scale Quantum (NISQ) and fault-tolerant eras due to its versatility in different connectivity architectures and the optimality of its resource consumption. The method can work on any connectivity architecture with asymptotic optimal circuit depth and size. For a 10-qutrit diagonal unitary, our algorithm reduces the circuit depth form about 100000 to 500 with 300 ancillary qutrits. Further, this method can be promoted to different quantum circuit synthesis problems, such as quantum state preparation problems, general unitary synthesis problems, etc.
Related papers
- Entropy-driven entanglement forging [0.0]
We show how entropy-driven entanglement forging can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
Our findings indicate that our method, entropy-driven entanglement forging, can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2024-09-06T16:54:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Enhancing variational quantum state diagonalization using reinforcement
learning techniques [1.583327010995414]
We tackle the problem of designing a very shallow quantum circuit, required in the quantum state diagonalization task.
We use a novel encoding method for the RL-state, a dense reward function, and an $epsilon$-greedy policy to achieve this.
We demonstrate that the circuits proposed by the reinforcement learning methods are shallower than the standard variational quantum state diagonalization algorithm.
arXiv Detail & Related papers (2023-06-19T17:59:04Z) - Quantum Computing Quantum Monte Carlo [8.69884453265578]
We propose a hybrid quantum-classical algorithm that integrates quantum computing and quantum Monte Carlo.
Our work paves the way to solving practical problems with intermediatescale and early-fault tolerant quantum computers.
arXiv Detail & Related papers (2022-06-21T14:26:24Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
We propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits)
Our method uses a transpilation of a circuit in the standard qubit form, which depends on the parameters of a qudit-based processor.
We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set.
arXiv Detail & Related papers (2021-11-08T11:09:37Z) - Configurable sublinear circuits for quantum state preparation [1.9279780052245203]
We show a configuration that encodes an $N$-dimensional state by a quantum circuit with $O(sqrtN)$ width and depth and entangled information in ancillary qubits.
We show a proof-of-principle on five quantum computers and compare the results.
arXiv Detail & Related papers (2021-08-23T13:52:43Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Long-Time Error-Mitigating Simulation of Open Quantum Systems on Near Term Quantum Computers [38.860468003121404]
We study an open quantum system simulation on quantum hardware, which demonstrates robustness to hardware errors even with deep circuits containing up to two thousand entangling gates.
We simulate two systems of electrons coupled to an infinite thermal bath: 1) a system of dissipative free electrons in a driving electric field; and 2) the thermalization of two interacting electrons in a single orbital in a magnetic field -- the Hubbard atom.
Our results demonstrate that algorithms for simulating open quantum systems are able to far outperform similarly complex non-dissipative algorithms on noisy hardware.
arXiv Detail & Related papers (2021-08-02T21:36:37Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Numerical hardware-efficient variational quantum simulation of a soliton
solution [0.0]
We discuss the capabilities of quantum algorithms with special attention paid to a hardware-efficient variational eigensolver.
A delicate interplay between magnetic interactions allows one to stabilize a chiral state that destroys the homogeneity of magnetic ordering.
We argue that, while being capable of correctly reproducing a uniform magnetic configuration, the hardware-efficient ansatz meets difficulties in providing a detailed description to a noncollinear magnetic structure.
arXiv Detail & Related papers (2021-05-13T11:58:18Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
We review and extend the application of deep learning to quantum geometric control problems.
We demonstrate enhancements in time-optimal control in the context of quantum circuit synthesis problems.
Our results are of interest to researchers in quantum control and quantum information theory seeking to combine machine learning and geometric techniques for time-optimal control problems.
arXiv Detail & Related papers (2020-06-19T19:12:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.