Down with the Hierarchy: The 'H' in HNSW Stands for "Hubs"
- URL: http://arxiv.org/abs/2412.01940v2
- Date: Sun, 02 Feb 2025 19:25:13 GMT
- Title: Down with the Hierarchy: The 'H' in HNSW Stands for "Hubs"
- Authors: Blaise Munyampirwa, Vihan Lakshman, Benjamin Coleman,
- Abstract summary: We show that a flat navigable small world graph graph retains all of the benefits of HNSW on high-dimensional datasets.
We go a step further and study emphwhy the hierarchy of HNSW provides no benefit in high dimensions.
- Score: 9.912508121466995
- License:
- Abstract: Driven by recent breakthrough advances in neural representation learning, approximate near-neighbor (ANN) search over vector embeddings has emerged as a critical computational workload. With the introduction of the seminal Hierarchical Navigable Small World (HNSW) algorithm, graph-based indexes have established themselves as the overwhelmingly dominant paradigm for efficient and scalable ANN search. As the name suggests, HNSW searches a layered hierarchical graph to quickly identify neighborhoods of similar points to a given query vector. But is this hierarchy even necessary? A rigorous experimental analysis to answer this question would provide valuable insights into the nature of algorithm design for ANN search and motivate directions for future work in this increasingly crucial domain. To that end, we conduct an extensive benchmarking study covering more large-scale datasets than prior investigations of this question. We ultimately find that a flat navigable small world graph graph retains all of the benefits of HNSW on high-dimensional datasets, with latency and recall performance essentially \emph{identical} to the original algorithm but with less memory overhead. Furthermore, we go a step further and study \emph{why} the hierarchy of HNSW provides no benefit in high dimensions, hypothesizing that navigable small world graphs contain a well-connected, frequently traversed ``highway" of hub nodes that maintain the same purported function as the hierarchical layers. We present compelling empirical evidence that the \emph{Hub Highway Hypothesis} holds for real datasets and investigate the mechanisms by which the highway forms. The implications of this hypothesis may also provide future research directions in developing enhancements to graph-based ANN search.
Related papers
- The Impacts of Data, Ordering, and Intrinsic Dimensionality on Recall in Hierarchical Navigable Small Worlds [0.09208007322096533]
Investigation focuses on HNSW's efficacy across a spectrum of datasets.
We discover that the recall of approximate HNSW search, in comparison to exact K Nearest Neighbours (KNN) search, is linked to the vector space's intrinsic dimensionality.
We observe that running popular benchmark datasets with HNSW instead of KNN can shift rankings by up to three positions for some models.
arXiv Detail & Related papers (2024-05-28T04:16:43Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - A Theoretical Analysis Of Nearest Neighbor Search On Approximate Near
Neighbor Graph [51.880164098926166]
Graph-based algorithms have demonstrated state-of-the-art performance in the nearest neighbor search (NN-Search) problem.
There exists a practice-to-theory gap in the graph-based NN-Search algorithms.
We present theoretical guarantees of solving NN-Search via greedy search on ANN-Graph for low dimensional and dense vectors.
arXiv Detail & Related papers (2023-03-10T21:18:34Z) - ReVoLT: Relational Reasoning and Voronoi Local Graph Planning for
Target-driven Navigation [1.0896567381206714]
Embodied AI is an inevitable trend that emphasizes the interaction between intelligent entities and the real world.
Recent works focus on exploiting layout relationships by graph neural networks (GNNs)
We decouple this task and propose ReVoLT, a hierarchical framework.
arXiv Detail & Related papers (2023-01-06T05:19:56Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - Subgraph Matching via Query-Conditioned Subgraph Matching Neural
Networks and Bi-Level Tree Search [33.9052190473029]
Subgraph Matching is a core operation in graph database search, biomedical analysis, social group finding, etc.
In this paper, we propose a novel encoder-decoder neural network architecture to dynamically compute the matching information between the query and the target graphs.
Experiments on five large real-world target graphs show that N-BLS can significantly improve the subgraph matching performance.
arXiv Detail & Related papers (2022-07-21T04:47:21Z) - Sublinear Algorithms for Hierarchical Clustering [14.124026862687941]
We study hierarchical clustering for massive graphs under three well-studied models of sublinear computation.
We design sublinear algorithms for hierarchical clustering in all three models.
arXiv Detail & Related papers (2022-06-15T16:25:27Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Arch-Graph: Acyclic Architecture Relation Predictor for
Task-Transferable Neural Architecture Search [96.31315520244605]
Arch-Graph is a transferable NAS method that predicts task-specific optimal architectures.
We show Arch-Graph's transferability and high sample efficiency across numerous tasks.
It is able to find top 0.16% and 0.29% architectures on average on two search spaces under the budget of only 50 models.
arXiv Detail & Related papers (2022-04-12T16:46:06Z) - Edge-featured Graph Neural Architecture Search [131.4361207769865]
We propose Edge-featured Graph Neural Architecture Search to find the optimal GNN architecture.
Specifically, we design rich entity and edge updating operations to learn high-order representations.
We show EGNAS can search better GNNs with higher performance than current state-of-the-art human-designed and searched-based GNNs.
arXiv Detail & Related papers (2021-09-03T07:53:18Z) - Neural Architecture Search in Graph Neural Networks [1.2881413375147996]
This paper compares two NAS methods for optimizing Graph Neural Networks (GNN)
Results consider 7 datasets over two search spaces and show that both methods obtain similar accuracies to a random search.
arXiv Detail & Related papers (2020-07-31T21:04:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.