FGATT: A Robust Framework for Wireless Data Imputation Using Fuzzy Graph Attention Networks and Transformer Encoders
- URL: http://arxiv.org/abs/2412.01979v2
- Date: Sat, 01 Feb 2025 22:44:21 GMT
- Title: FGATT: A Robust Framework for Wireless Data Imputation Using Fuzzy Graph Attention Networks and Transformer Encoders
- Authors: Jinming Xing, Chang Xue, Dongwen Luo, Ruilin Xing,
- Abstract summary: Fuzzy Graph Attention Network (FGAT) and Transformer encoder are used to perform robust and accurate data imputation.
Model is well-suited for applications in wireless sensor networks and IoT environments, where data integrity is critical.
- Score: 0.0
- License:
- Abstract: Missing data is a pervasive challenge in wireless networks and many other domains, often compromising the performance of machine learning and deep learning models. To address this, we propose a novel framework, FGATT, that combines the Fuzzy Graph Attention Network (FGAT) with the Transformer encoder to perform robust and accurate data imputation. FGAT leverages fuzzy rough sets and graph attention mechanisms to capture spatial dependencies dynamically, even in scenarios where predefined spatial information is unavailable. The Transformer encoder is employed to model temporal dependencies, utilizing its self-attention mechanism to focus on significant time-series patterns. A self-adaptive graph construction method is introduced to enable dynamic connectivity learning, ensuring the framework's applicability to a wide range of wireless datasets. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods in imputation accuracy and robustness, particularly in scenarios with substantial missing data. The proposed model is well-suited for applications in wireless sensor networks and IoT environments, where data integrity is critical.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - A Generative Self-Supervised Framework using Functional Connectivity in
fMRI Data [15.211387244155725]
Deep neural networks trained on Functional Connectivity (FC) networks extracted from functional Magnetic Resonance Imaging (fMRI) data have gained popularity.
Recent research on the application of Graph Neural Network (GNN) to FC suggests that exploiting the time-varying properties of the FC could significantly improve the accuracy and interpretability of the model prediction.
High cost of acquiring high-quality fMRI data and corresponding labels poses a hurdle to their application in real-world settings.
We propose a generative SSL approach that is tailored to effectively harnesstemporal information within dynamic FC.
arXiv Detail & Related papers (2023-12-04T16:14:43Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Graph Neural Networks for Multi-Robot Active Information Acquisition [15.900385823366117]
A team of mobile robots, communicating through an underlying graph, estimates a hidden state expressing a phenomenon of interest.
Existing approaches are either not scalable, unable to handle dynamic phenomena or not robust to changes in the communication graph.
We propose an Information-aware Graph Block Network (I-GBNet) that aggregates information over the graph representation and provides sequential-decision making in a distributed manner.
arXiv Detail & Related papers (2022-09-24T21:45:06Z) - An Online Ensemble Learning Model for Detecting Attacks in Wireless
Sensor Networks [0.0]
We develop an intelligent, efficient, and updatable intrusion detection system by applying an important machine learning concept known as ensemble learning.
In this paper, we examine the application of different homogeneous and heterogeneous online ensembles in sensory data analysis.
Among the proposed novel online ensembles, both the heterogeneous ensemble consisting of an Adaptive Random Forest (ARF) combined with the Hoeffding Adaptive Tree (HAT) algorithm and the homogeneous ensemble HAT made up of 10 models achieved higher detection rates of 96.84% and 97.2%, respectively.
arXiv Detail & Related papers (2022-04-28T23:10:47Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - Spatio-Temporal Federated Learning for Massive Wireless Edge Networks [23.389249751372393]
An edge server and numerous mobile devices (clients) jointly learn a global model without transporting huge amount of data collected by the mobile devices to the edge server.
The proposed FL approach exploits spatial and temporal correlations between learning updates from different mobile devices scheduled to join STFL in various trainings.
An analytical framework of STFL is proposed and employed to study the learning capability of STFL via its convergence performance.
arXiv Detail & Related papers (2021-10-27T16:46:45Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Cross-Node Federated Graph Neural Network for Spatio-Temporal Data
Modeling [13.426382746638007]
We propose a graph neural network (GNN)-based architecture under the constraint of cross-node federated learning.
CNFGNN operates by disentangling the temporal computation on devices and spatial dynamics on the server.
Experiments show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings.
arXiv Detail & Related papers (2021-06-09T17:12:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.