論文の概要: Optimizing Genetic Algorithms Using the Binomial Distribution
- arxiv url: http://arxiv.org/abs/2412.02009v1
- Date: Mon, 02 Dec 2024 22:26:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:48:46.506785
- Title: Optimizing Genetic Algorithms Using the Binomial Distribution
- Title(参考訳): 二項分布を用いた遺伝的アルゴリズムの最適化
- Authors: Vincent A. Cicirello,
- Abstract要約: 実行速度はランダム性の実装方法に大きく依存する。
ビットフリップ突然変異、一様交叉、制御ループの最適化方法を示す。
我々はオープンソースのJavaライブラリChips-n-Salsaにアプローチを実装します。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Evolutionary algorithms rely very heavily on randomized behavior. Execution speed, therefore, depends strongly on how we implement randomness, such as our choice of pseudorandom number generator, or the algorithms used to map pseudorandom values to specific intervals or distributions. In this paper, we observe that the standard bit-flip mutation of a genetic algorithm (GA), uniform crossover, and the GA control loop that determines which pairs of parents to cross are all in essence binomial experiments. We then show how to optimize each of these by utilizing a binomial distribution and sampling algorithms to dramatically speed the runtime of a GA relative to the common implementation. We implement our approach in the open-source Java library Chips-n-Salsa. Our experiments validate that the approach is orders of magnitude faster than the common GA implementation, yet produces solutions that are statistically equivalent in solution quality.
- Abstract(参考訳): 進化的アルゴリズムはランダムな振る舞いに大きく依存している。
したがって実行速度は、擬似乱数生成器の選択や、擬似乱数値を特定の間隔や分布にマッピングするアルゴリズムなど、ランダム性の実装方法に大きく依存する。
本稿では、遺伝的アルゴリズム(GA)の標準的なビットフリップ変異、一様交叉、およびどのペアの親が交差するかを決定するGA制御ループが本質的に二項的実験であることを示す。
次に、二項分布とサンプリングアルゴリズムを用いてそれぞれの最適化方法を示し、共通の実装と比較してGAのランタイムを劇的に高速化する。
我々はオープンソースのJavaライブラリChips-n-Salsaにアプローチを実装します。
本実験は,提案手法がGA実装よりも桁違いに高速であることを示した。
関連論文リスト
- Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - A Hybrid Genetic Algorithm for the min-max Multiple Traveling Salesman
Problem [0.9790236766474201]
本稿では,Multiple Traveling Salesman Problem (mTSP) を解くためのハイブリッド遺伝的アルゴリズムを提案する。
新たなクロスオーバーオペレーターは、2人の親からの同様のツアーを組み合わせるように設計されており、人口に対して大きな多様性を提供する。
我々のアルゴリズムは、ベンチマークセットに対してテストした場合に、同様のカットオフ時間しきい値で、すべての既存のアルゴリズムを平均で上回ります。
論文 参考訳(メタデータ) (2023-07-14T01:57:10Z) - Fast Optimal Locally Private Mean Estimation via Random Projections [58.603579803010796]
ユークリッド球における高次元ベクトルの局所的プライベート平均推定の問題について検討する。
プライベート平均推定のための新しいアルゴリズムフレームワークであるProjUnitを提案する。
各ランダム化器はその入力をランダムな低次元部分空間に投影し、結果を正規化し、最適なアルゴリズムを実行する。
論文 参考訳(メタデータ) (2023-06-07T14:07:35Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Massively Parallel Genetic Optimization through Asynchronous Propagation
of Populations [50.591267188664666]
Propulateは、グローバル最適化のための進化的最適化アルゴリズムとソフトウェアパッケージである。
提案アルゴリズムは, 選択, 突然変異, 交叉, 移動の変種を特徴とする。
Propulateは解の精度を犠牲にすることなく、最大で3桁高速であることがわかった。
論文 参考訳(メタデータ) (2023-01-20T18:17:34Z) - Optimal Algorithms for Mean Estimation under Local Differential Privacy [55.32262879188817]
そこで本研究では,PrivUnitが局所的プライベートな乱数化器群間の最適分散を実現することを示す。
また,ガウス分布に基づくPrivUnitの新たな変種も開発しており,数学的解析に適しており,同じ最適性保証を享受できる。
論文 参考訳(メタデータ) (2022-05-05T06:43:46Z) - Population based change-point detection for the identification of
homozygosity islands [0.0]
本稿では,動的プログラミングアルゴリズムで効率的に計算したり,高速なグリーディ二分法アルゴリズムで近似できるペナル化最大可能性法を提案する。
両アルゴリズムは、確率ベクトルの分布と独立サンプリングに関する非常に一般的な仮定の下で、ほぼ確実に変化点の集合に収束することを示す。
この新しいアプローチは、集団内の個人のゲノム上のホモ接合性島を同定する問題によって動機付けられている。
論文 参考訳(メタデータ) (2021-11-19T12:53:41Z) - Adaptive Random Quantum Eigensolver [0.0]
本稿では,乱数生成器の確率密度関数のパラメータ化と最適化を行う一般手法を提案する。
私たちの最適化は、学習速度と学習精度の2つのメリットに基づいています。
論文 参考訳(メタデータ) (2021-06-28T12:01:05Z) - A Rank based Adaptive Mutation in Genetic Algorithm [0.0]
本稿では,染色体ランクを用いた突然変異確率生成の代替手法を提案する。
単純な遺伝的アルゴリズム(SGA)と一定の突然変異確率と限られた資源制約内での適応的アプローチとの比較実験を行った。
論文 参考訳(メタデータ) (2021-04-18T12:41:33Z) - Optimal Static Mutation Strength Distributions for the $(1+\lambda)$
Evolutionary Algorithm on OneMax [1.0965065178451106]
人口が十分に大きくなると、このような最適な分布は驚くほど複雑で直感に反する可能性がある。
人口が十分に大きくなると、このような最適な分布は驚くほど複雑で直感に反する可能性がある。
論文 参考訳(メタデータ) (2021-02-09T16:56:25Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。