論文の概要: Massively Parallel Genetic Optimization through Asynchronous Propagation
of Populations
- arxiv url: http://arxiv.org/abs/2301.08713v1
- Date: Fri, 20 Jan 2023 18:17:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-23 12:43:13.961121
- Title: Massively Parallel Genetic Optimization through Asynchronous Propagation
of Populations
- Title(参考訳): 集団の非同期伝播による大規模並列遺伝的最適化
- Authors: Oskar Taubert, Marie Weiel, Daniel Coquelin, Anis Farshian, Charlotte
Debus, Alexander Schug, Achim Streit and Markus G\"otz
- Abstract要約: Propulateは、グローバル最適化のための進化的最適化アルゴリズムとソフトウェアパッケージである。
提案アルゴリズムは, 選択, 突然変異, 交叉, 移動の変種を特徴とする。
Propulateは解の精度を犠牲にすることなく、最大で3桁高速であることがわかった。
- 参考スコア(独自算出の注目度): 50.591267188664666
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present Propulate, an evolutionary optimization algorithm and software
package for global optimization and in particular hyperparameter search. For
efficient use of HPC resources, Propulate omits the synchronization after each
generation as done in conventional genetic algorithms. Instead, it steers the
search with the complete population present at time of breeding new
individuals. We provide an MPI-based implementation of our algorithm, which
features variants of selection, mutation, crossover, and migration and is easy
to extend with custom functionality. We compare Propulate to the established
optimization tool Optuna. We find that Propulate is up to three orders of
magnitude faster without sacrificing solution accuracy, demonstrating the
efficiency and efficacy of our lazy synchronization approach. Code and
documentation are available at https://github.com/Helmholtz-AI-Energy/propulate
- Abstract(参考訳): 本稿では,グローバル最適化,特にハイパーパラメータ探索のための進化的最適化アルゴリズムとソフトウェアパッケージであるpropulateを提案する。
HPCリソースの効率的な利用のために、Propulateは、従来の遺伝的アルゴリズムのように、各世代後の同期を省略する。
代わりに、新しい個体を育成するときに、完全な人口で探索を司る。
我々は,選択,突然変異,クロスオーバー,マイグレーションの変種を特徴とするアルゴリズムのmpiベース実装を提供し,カスタム機能により拡張が容易である。
Propulateを確立された最適化ツールであるOptunaと比較する。
Propulateは解の精度を犠牲にすることなく最大で3桁高速であり、遅延同期手法の有効性と有効性を示す。
コードとドキュメントはhttps://github.com/Helmholtz-AI-Energy/propulateで公開されている。
関連論文リスト
- Enhancing Machine Learning Model Performance with Hyper Parameter
Optimization: A Comparative Study [0.0]
機械学習における最も重要な問題のひとつは、トレーニングモデルに適切なハイパーパラメータの選択である。
ハイパーパラメータ最適化(HPO)は、人工知能研究が最近注目している話題である。
本研究では,グリッドやランダム探索,ベイズ最適化などの古典的手法,遺伝的アルゴリズムや粒子群最適化といった人口ベースアルゴリズムについて論じる。
論文 参考訳(メタデータ) (2023-02-14T10:12:10Z) - Accelerating the Evolutionary Algorithms by Gaussian Process Regression
with $\epsilon$-greedy acquisition function [2.7716102039510564]
本稿では,最適化の収束を早めるために,エリート個人を推定する新しい手法を提案する。
我々の提案には、エリート個人を推定し、最適化の収束を加速する幅広い見通しがある。
論文 参考訳(メタデータ) (2022-10-13T07:56:47Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
興味のあるタスクを直接検索できる,スケーラブルで汎用的なフレームワークを初めて提示する。
基礎となる数学表現の自然木構造に着想を得て、空間を超木に再配置する。
我々は,モンテカルロ法を木探索に適用し,レジェクションサンプリングと等価形状検出を備える。
論文 参考訳(メタデータ) (2022-09-27T17:51:31Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
我々は,テキストベースのトランスフォーマーHPOフレームワークであるOptFormerを紹介した。
実験の結果,OptFormerは少なくとも7種類のHPOアルゴリズムを模倣できることがわかった。
論文 参考訳(メタデータ) (2022-05-26T12:51:32Z) - Automatic tuning of hyper-parameters of reinforcement learning
algorithms using Bayesian optimization with behavioral cloning [0.0]
強化学習(RL)では、学習エージェントが収集したデータの情報内容は多くのハイパーパラメータの設定に依存する。
本研究では,ベイズ最適化を用いた自律的ハイパーパラメータ設定手法を提案する。
実験は、他の手作業による調整や最適化ベースのアプローチと比較して、有望な結果を示している。
論文 参考訳(メタデータ) (2021-12-15T13:10:44Z) - Highly Parallel Autoregressive Entity Linking with Discriminative
Correction [51.947280241185]
自己回帰リンクを全ての潜在的な言及に対して並列化する,非常に効率的な手法を提案する。
我々のモデルは以前の生成法より70倍高速で精度が高い。
論文 参考訳(メタデータ) (2021-09-08T17:28:26Z) - Automated Configuration of Genetic Algorithms by Tuning for Anytime
Performance [4.33419118449588]
コンフィグレーションタスクに対して、いつでもパフォーマンス対策を使うことが望ましいことを示します。
予測実行時間のチューニングは、ターゲットアルゴリズムに割り当てられる予算に対してはるかに敏感である。
論文 参考訳(メタデータ) (2021-06-11T10:44:51Z) - Optimal Static Mutation Strength Distributions for the $(1+\lambda)$
Evolutionary Algorithm on OneMax [1.0965065178451106]
人口が十分に大きくなると、このような最適な分布は驚くほど複雑で直感に反する可能性がある。
人口が十分に大きくなると、このような最適な分布は驚くほど複雑で直感に反する可能性がある。
論文 参考訳(メタデータ) (2021-02-09T16:56:25Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。