Fast characterization of optically detected magnetic resonance spectra via data clustering
- URL: http://arxiv.org/abs/2405.18648v1
- Date: Tue, 28 May 2024 23:18:47 GMT
- Title: Fast characterization of optically detected magnetic resonance spectra via data clustering
- Authors: Dylan G. Stone, Benjamin Whitefield, Mehran Kianinia, Carlo Bradac,
- Abstract summary: Optically detected magnetic resonance (ODMR) has become a well-established and powerful technique for measuring the spin state of solid-state quantum emitters.
Central to many of these sensing applications is the ability to reliably analyze ODMR data.
We present an algorithm based on data clustering that overcomes this limitation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optically detected magnetic resonance (ODMR) has become a well-established and powerful technique for measuring the spin state of solid-state quantum emitters, at room temperature. Relying on spin-dependent recombination processes involving the emitters ground, excited and metastable states, ODMR is enabling spin-based quantum sensing of nanoscale electric and magnetic fields, temperature, strain and pressure, as well as imaging of individual electron and nuclear spins. Central to many of these sensing applications is the ability to reliably analyze ODMR data, as the resonance frequencies in these spectra map directly onto target physical quantities acting on the spin sensor. However, this can be onerous, as relatively long integration times -- from milliseconds up to tens of seconds -- are often needed to reach a signal-to-noise level suitable to determine said resonances using traditional fitting methods. Here, we present an algorithm based on data clustering that overcome this limitation and allows determining the resonance frequencies of ODMR spectra with better accuracy (~1.3x factor), higher resolution (~4.7x factor) and/or overall fewer data points (~5x factor) than standard approaches based on statistical inference. The proposed clustering algorithm (CA) is thus a powerful tool for many ODMR-based quantum sensing applications, especially when dealing with noisy and scarce data sets.
Related papers
- High-Field Microscale NMR Spectroscopy with NV Centers in Dipolarly-Coupled Samples [0.0]
Diamond-based quantum sensors have enabled high-resolution NMR spectroscopy at the microscale.
We present a protocol that enables the scanning of nuclear spins in dipolarly-coupled samples at high magnetic fields.
arXiv Detail & Related papers (2024-05-21T15:14:16Z) - Spin projection noise and the magnetic sensitivity of optically pumped
magnetometers [0.0]
We present a new approach for calculating the spin projection noise (SPN)-limited signal to noise ratio (SNR) and the magnetic sensitivity of OPMs.
Our model is based solely on the mean-field density matrix dynamics.
We report on a new SERF feature; the reduction of spin-projection noise at the spin precession frequency as a consequence of strongly-correlated hyperfine spins.
arXiv Detail & Related papers (2024-02-16T15:11:46Z) - Quantum sensing via magnetic-noise-protected states in an electronic
spin dyad [0.0]
We investigate the coherent spin dynamics of a hetero-spin system formed by a spin S=1 featuring a non-zero crystal field.
We show that the zero-quantum coherences we create between them can be remarkably long-lived.
These spin dyads could be exploited as nanoscale gradiometers for precision magnetometry or as probes for magnetic-noise-free electrometry and thermal sensing.
arXiv Detail & Related papers (2023-06-29T19:27:17Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
We introduce and experimentally demonstrate a quantum sensing protocol to sample and reconstruct the auto-correlation of a noise process.
Walsh noise spectroscopy method exploits simple sequences of spin-flip pulses to generate a complete basis of digital filters.
We experimentally reconstruct the auto-correlation function of the effective magnetic field produced by the nuclear-spin bath on the electronic spin of a single nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2022-12-19T02:19:35Z) - Nanoscale covariance magnetometry with diamond quantum sensors [0.0]
Nitrogen vacancy (NV) centers in diamond are atom-scale defects with long spin coherence times.
In averaging over many single-NV center experiments, both techniques discard information.
Here we propose and implement a new sensing modality, whereby two or more NV centers are measured simultaneously.
arXiv Detail & Related papers (2022-09-19T01:46:19Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Quantum Heterodyne Sensing of Nuclear Spins via Double Resonance [0.0]
A heterodyne approach is widely used to overcome the electron spin lifetime limit in spectral resolution.
This work paves the way towards high field nanoscale heterodyne NMR protocols with NV centres.
arXiv Detail & Related papers (2022-05-20T13:48:59Z) - Investigation and comparison of measurement schemes in the low frequency
biosensing regime using solid-state defect centers [58.720142291102135]
Solid state defects in diamond make promising quantum sensors with high sensitivity andtemporal resolution.
Inhomogeneous broadening and drive amplitude variations have differing impacts on the sensitivity depending on the sensing scheme used.
We numerically investigate and compare the predicted sensitivity of schemes based on continuous-wave (CW) optically detected magnetic resonance (ODMR) spectroscopy, pi-pulse ODMR and Ramsey interferometry.
arXiv Detail & Related papers (2021-09-27T13:05:23Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.