GNN-based Auto-Encoder for Short Linear Block Codes: A DRL Approach
- URL: http://arxiv.org/abs/2412.02053v1
- Date: Tue, 03 Dec 2024 00:25:14 GMT
- Title: GNN-based Auto-Encoder for Short Linear Block Codes: A DRL Approach
- Authors: Kou Tian, Chentao Yue, Changyang She, Yonghui Li, Branka Vucetic,
- Abstract summary: It integrates deep reinforcement learning (DRL) and graph neural networks (GNN) in code design.
An edge-weighted GNN (EW-GNN) decoder is proposed, which operates on the Tanner graph with an iterative message-passing structure.
An iterative joint training of the DRL-based code designer and the EW-GNN decoder is performed to optimize the end-end encoding and decoding process.
- Score: 43.17241175857862
- License:
- Abstract: This paper presents a novel auto-encoder based end-to-end channel encoding and decoding. It integrates deep reinforcement learning (DRL) and graph neural networks (GNN) in code design by modeling the generation of code parity-check matrices as a Markov Decision Process (MDP), to optimize key coding performance metrics such as error-rates and code algebraic properties. An edge-weighted GNN (EW-GNN) decoder is proposed, which operates on the Tanner graph with an iterative message-passing structure. Once trained on a single linear block code, the EW-GNN decoder can be directly used to decode other linear block codes of different code lengths and code rates. An iterative joint training of the DRL-based code designer and the EW-GNN decoder is performed to optimize the end-end encoding and decoding process. Simulation results show the proposed auto-encoder significantly surpasses several traditional coding schemes at short block lengths, including low-density parity-check (LDPC) codes with the belief propagation (BP) decoding and the maximum-likelihood decoding (MLD), and BCH with BP decoding, offering superior error-correction capabilities while maintaining low decoding complexity.
Related papers
- Decoding Quantum LDPC Codes using Collaborative Check Node Removal [0.0]
We present a strategy to improve the performance of the iterative decoders based on a collaborative way.
We use the concept of bit separation and generalize it to qubit separation.
This gives us a metric to analyze and improve the decoder's performance towards harmful configurations of QLDPC codes.
arXiv Detail & Related papers (2025-01-14T11:41:45Z) - On the Design and Performance of Machine Learning Based Error Correcting Decoders [3.8289109929360245]
We first consider the so-called single-label neural network (SLNN) and the multi-label neural network (MLNN) decoders which have been reported to achieve near maximum likelihood (ML) performance.
We then turn our attention to two transformer-based decoders: the error correction code transformer (ECCT) and the cross-attention message passing transformer (CrossMPT)
arXiv Detail & Related papers (2024-10-21T11:23:23Z) - Decoding Quantum LDPC Codes Using Graph Neural Networks [52.19575718707659]
We propose a novel decoding method for Quantum Low-Density Parity-Check (QLDPC) codes based on Graph Neural Networks (GNNs)
The proposed GNN-based QLDPC decoder exploits the sparse graph structure of QLDPC codes and can be implemented as a message-passing decoding algorithm.
arXiv Detail & Related papers (2024-08-09T16:47:49Z) - Factor Graph Optimization of Error-Correcting Codes for Belief Propagation Decoding [62.25533750469467]
Low-Density Parity-Check (LDPC) codes possess several advantages over other families of codes.
The proposed approach is shown to outperform the decoding performance of existing popular codes by orders of magnitude.
arXiv Detail & Related papers (2024-06-09T12:08:56Z) - Learning Linear Block Error Correction Codes [62.25533750469467]
We propose for the first time a unified encoder-decoder training of binary linear block codes.
We also propose a novel Transformer model in which the self-attention masking is performed in a differentiable fashion for the efficient backpropagation of the code gradient.
arXiv Detail & Related papers (2024-05-07T06:47:12Z) - A Scalable Graph Neural Network Decoder for Short Block Codes [49.25571364253986]
We propose a novel decoding algorithm for short block codes based on an edge-weighted graph neural network (EW-GNN)
The EW-GNN decoder operates on the Tanner graph with an iterative message-passing structure.
We show that the EW-GNN decoder outperforms the BP and deep-learning-based BP methods in terms of the decoding error rate.
arXiv Detail & Related papers (2022-11-13T17:13:12Z) - Graph Neural Networks for Channel Decoding [71.15576353630667]
We showcase competitive decoding performance for various coding schemes, such as low-density parity-check (LDPC) and BCH codes.
The idea is to let a neural network (NN) learn a generalized message passing algorithm over a given graph.
We benchmark our proposed decoder against state-of-the-art in conventional channel decoding as well as against recent deep learning-based results.
arXiv Detail & Related papers (2022-07-29T15:29:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.