Explainable and Interpretable Multimodal Large Language Models: A Comprehensive Survey
- URL: http://arxiv.org/abs/2412.02104v1
- Date: Tue, 03 Dec 2024 02:54:31 GMT
- Title: Explainable and Interpretable Multimodal Large Language Models: A Comprehensive Survey
- Authors: Yunkai Dang, Kaichen Huang, Jiahao Huo, Yibo Yan, Sirui Huang, Dongrui Liu, Mengxi Gao, Jie Zhang, Chen Qian, Kun Wang, Yong Liu, Jing Shao, Hui Xiong, Xuming Hu,
- Abstract summary: Large language models (LLMs) and computer vision (CV) systems driving advancements in natural language understanding and visual processing.<n>The convergence of these technologies has catalyzed the rise of multimodal AI, enabling richer, cross-modal understanding that spans text, vision, audio, and video modalities.<n>Multimodal large language models (MLLMs) have emerged as a powerful framework, demonstrating impressive capabilities in tasks like image-text generation, visual question answering, and cross-modal retrieval.<n>Despite these advancements, the complexity and scale of MLLMs introduce significant challenges in interpretability and explainability, essential for establishing
- Score: 46.617998833238126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of Artificial Intelligence (AI) has revolutionized numerous fields, with large language models (LLMs) and computer vision (CV) systems driving advancements in natural language understanding and visual processing, respectively. The convergence of these technologies has catalyzed the rise of multimodal AI, enabling richer, cross-modal understanding that spans text, vision, audio, and video modalities. Multimodal large language models (MLLMs), in particular, have emerged as a powerful framework, demonstrating impressive capabilities in tasks like image-text generation, visual question answering, and cross-modal retrieval. Despite these advancements, the complexity and scale of MLLMs introduce significant challenges in interpretability and explainability, essential for establishing transparency, trustworthiness, and reliability in high-stakes applications. This paper provides a comprehensive survey on the interpretability and explainability of MLLMs, proposing a novel framework that categorizes existing research across three perspectives: (I) Data, (II) Model, (III) Training \& Inference. We systematically analyze interpretability from token-level to embedding-level representations, assess approaches related to both architecture analysis and design, and explore training and inference strategies that enhance transparency. By comparing various methodologies, we identify their strengths and limitations and propose future research directions to address unresolved challenges in multimodal explainability. This survey offers a foundational resource for advancing interpretability and transparency in MLLMs, guiding researchers and practitioners toward developing more accountable and robust multimodal AI systems.
Related papers
- Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1) [66.51642638034822]
Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks.
Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains.
This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs.
arXiv Detail & Related papers (2025-04-04T04:04:56Z) - An Overview of Large Language Models for Statisticians [109.38601458831545]
Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence (AI)
This paper explores potential areas where statisticians can make important contributions to the development of LLMs.
We focus on issues such as uncertainty quantification, interpretability, fairness, privacy, watermarking and model adaptation.
arXiv Detail & Related papers (2025-02-25T03:40:36Z) - A Survey on Mechanistic Interpretability for Multi-Modal Foundation Models [74.48084001058672]
The rise of foundation models has transformed machine learning research.
multimodal foundation models (MMFMs) pose unique interpretability challenges beyond unimodal frameworks.
This survey explores two key aspects: (1) the adaptation of LLM interpretability methods to multimodal models and (2) understanding the mechanistic differences between unimodal language models and crossmodal systems.
arXiv Detail & Related papers (2025-02-22T20:55:26Z) - Visual Error Patterns in Multi-Modal AI: A Statistical Approach [0.0]
GPT-4o was chosen as the focus of this study for its advanced multi-modal capabilities.<n>This study investigates the parallels and distinctions between machine-driven and human-driven visual perception.
arXiv Detail & Related papers (2024-11-27T01:20:08Z) - A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks [5.0453036768975075]
Large language models (MLLMs) integrate text, images, video and audio to enable AI systems for cross-modal understanding and generation.
Book examines prominent MLLM implementations while addressing key challenges in scalability, robustness, and cross-modal learning.
Concluding with a discussion of ethical considerations, responsible AI development, and future directions, this authoritative resource provides both theoretical frameworks and practical insights.
arXiv Detail & Related papers (2024-11-09T20:56:23Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
Vision-Language Models (VLMs) are advanced models that can tackle more intricate tasks such as image captioning and visual question answering.
Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.
We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible.
arXiv Detail & Related papers (2024-02-20T18:57:34Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
This comprehensive survey delves into the recent strides in HS moderation.
We highlight the burgeoning role of large language models (LLMs) and large multimodal models (LMMs)
We identify existing gaps in research, particularly in the context of underrepresented languages and cultures.
arXiv Detail & Related papers (2024-01-30T03:51:44Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - A Review on Explainability in Multimodal Deep Neural Nets [2.3204178451683264]
multimodal AI techniques have achieved much success in several application domains.
Despite their outstanding performance, the complex, opaque and black-box nature of the deep neural nets limits their social acceptance and usability.
This paper extensively reviews the present literature to present a comprehensive survey and commentary on the explainability in multimodal deep neural nets.
arXiv Detail & Related papers (2021-05-17T14:17:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.