論文の概要: Learning from Concealed Labels
- arxiv url: http://arxiv.org/abs/2412.02230v1
- Date: Tue, 03 Dec 2024 08:00:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:43:20.899571
- Title: Learning from Concealed Labels
- Title(参考訳): 概念ラベルから学ぶ
- Authors: Zhongnian Li, Meng Wei, Peng Ying, Tongfeng Sun, Xinzheng Xu,
- Abstract要約: 複数クラス分類のための隠れラベルから学習する,各インスタンスのプライバシ保護のための新しい設定を提案する。
ラベル収集段階では、機密ラベルがラベルセットに現れるのを防止し、機密データを注釈付けするための隠蔽ラベルとしてランダムにサンプリングされた無機密ラベルを指定しない。
- 参考スコア(独自算出の注目度): 5.235218636685312
- License:
- Abstract: Annotating data for sensitive labels (e.g., disease, smoking) poses a potential threats to individual privacy in many real-world scenarios. To cope with this problem, we propose a novel setting to protect privacy of each instance, namely learning from concealed labels for multi-class classification. Concealed labels prevent sensitive labels from appearing in the label set during the label collection stage, which specifies none and some random sampled insensitive labels as concealed labels set to annotate sensitive data. In this paper, an unbiased estimator can be established from concealed data under mild assumptions, and the learned multi-class classifier can not only classify the instance from insensitive labels accurately but also recognize the instance from the sensitive labels. Moreover, we bound the estimation error and show that the multi-class classifier achieves the optimal parametric convergence rate. Experiments demonstrate the significance and effectiveness of the proposed method for concealed labels in synthetic and real-world datasets.
- Abstract(参考訳): センシティブなラベル(病気、喫煙など)に注釈を付けると、現実の多くのシナリオで個人のプライバシーが脅かされる可能性がある。
この問題に対処するために,複数クラス分類のための隠れラベルから学習する,各インスタンスのプライバシを保護する新しい設定を提案する。
ラベル収集段階では、機密ラベルがラベルセットに現れるのを防止し、機密データを注釈付けするための隠蔽ラベルとしてランダムにサンプリングされた無機密ラベルを指定しない。
本稿では、軽微な仮定の下で隠蔽データからバイアスのない推定器を確立することができ、学習された多クラス分類器は、不感なラベルからインスタンスを正確に分類するだけでなく、センシティブなラベルからインスタンスを認識することができる。
さらに,推定誤差を有界化し,マルチクラス分類器が最適パラメトリック収束率を達成することを示す。
合成および実世界のデータセットにおける隠れラベルに対する提案手法の有効性と有効性を示す実験を行った。
関連論文リスト
- Mixed Blessing: Class-Wise Embedding guided Instance-Dependent Partial Label Learning [53.64180787439527]
部分ラベル学習(PLL)では、各サンプルは、基底トラスラベルと複数のノイズラベルからなる候補ラベルセットに関連付けられている。
初めて、各サンプルに対してクラスワイドな埋め込みを作成し、インスタンス依存のノイズラベルの関係を調査できるようにします。
ラベルの曖昧さを低減するため,グローバルな特徴情報を含むクラスプロトタイプのコンセプトを紹介した。
論文 参考訳(メタデータ) (2024-12-06T13:25:39Z) - You can't handle the (dirty) truth: Data-centric insights improve pseudo-labeling [60.27812493442062]
擬似ラベル法を改善するためにラベル付きデータ品質を調査することが重要であることを示す。
具体的には、擬似ラベルの拡張のために、DIPSと呼ばれる新しいデータキャラクタリゼーションと選択フレームワークを導入する。
本研究では,多種多様な実世界のデータセットを対象とした擬似ラベル手法に対するDIPSの適用性と影響を実証する。
論文 参考訳(メタデータ) (2024-06-19T17:58:40Z) - Don't Waste a Single Annotation: Improving Single-Label Classifiers
Through Soft Labels [7.396461226948109]
目的とする単一ラベル分類タスクに対する共通データアノテーションとトレーニング手法の限界に対処する。
以上の結果から,信頼性,二次ラベル,不一致などの付加的なアノテータ情報を用いて,ソフトラベルを効果的に生成できることが示唆された。
論文 参考訳(メタデータ) (2023-11-09T10:47:39Z) - Towards Imbalanced Large Scale Multi-label Classification with Partially
Annotated Labels [8.977819892091]
マルチラベル分類は、複数のクラスにインスタンスを関連付けることができる日常生活において、広く発生する問題である。
本研究では,ラベルの不均衡の問題に対処し,部分ラベルを用いたニューラルネットワークのトレーニング方法について検討する。
論文 参考訳(メタデータ) (2023-07-31T21:50:48Z) - Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations [91.67511167969934]
imprecise label learning (ILL)は、様々な不正確なラベル構成で学習を統合するためのフレームワークである。
我々は、ILLが部分ラベル学習、半教師付き学習、雑音ラベル学習にシームレスに適応できることを実証した。
論文 参考訳(メタデータ) (2023-05-22T04:50:28Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
本稿では,PU学習のためのラベル分布視点を提案する。
そこで本研究では,予測型と基底型のラベル分布間のラベル分布の整合性を追求する。
提案手法の有効性を3つのベンチマークデータセットで検証した。
論文 参考訳(メタデータ) (2022-12-06T07:38:29Z) - Acknowledging the Unknown for Multi-label Learning with Single Positive
Labels [65.5889334964149]
伝統的に、全ての無注釈ラベルは、単一正のマルチラベル学習(SPML)において負のラベルとして仮定される。
本研究では, 予測確率のエントロピーを最大化するエントロピー最大化(EM)損失を提案する。
非通知ラベルの正負ラベル不均衡を考慮し、非対称耐性戦略とより精密な監視を行うセルフペースト手順を備えた非対称擬似ラベル(APL)を提案する。
論文 参考訳(メタデータ) (2022-03-30T11:43:59Z) - A Study on the Autoregressive and non-Autoregressive Multi-label
Learning [77.11075863067131]
本稿では,ラベルとラベルの依存関係を共同で抽出する自己アテンションに基づく変分エンコーダモデルを提案する。
したがって、ラベルラベルとラベル機能の両方の依存関係を保ちながら、すべてのラベルを並列に予測することができる。
論文 参考訳(メタデータ) (2020-12-03T05:41:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。