論文の概要: Don't Waste a Single Annotation: Improving Single-Label Classifiers
Through Soft Labels
- arxiv url: http://arxiv.org/abs/2311.05265v1
- Date: Thu, 9 Nov 2023 10:47:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-10 15:42:55.711499
- Title: Don't Waste a Single Annotation: Improving Single-Label Classifiers
Through Soft Labels
- Title(参考訳): 単一アノテーションを無駄にしない:ソフトラベルによるシングルラベル分類の改善
- Authors: Ben Wu, Yue Li, Yida Mu, Carolina Scarton, Kalina Bontcheva and Xingyi
Song
- Abstract要約: 目的とする単一ラベル分類タスクに対する共通データアノテーションとトレーニング手法の限界に対処する。
以上の結果から,信頼性,二次ラベル,不一致などの付加的なアノテータ情報を用いて,ソフトラベルを効果的に生成できることが示唆された。
- 参考スコア(独自算出の注目度): 7.396461226948109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we address the limitations of the common data annotation and
training methods for objective single-label classification tasks. Typically,
when annotating such tasks annotators are only asked to provide a single label
for each sample and annotator disagreement is discarded when a final hard label
is decided through majority voting. We challenge this traditional approach,
acknowledging that determining the appropriate label can be difficult due to
the ambiguity and lack of context in the data samples. Rather than discarding
the information from such ambiguous annotations, our soft label method makes
use of them for training. Our findings indicate that additional annotator
information, such as confidence, secondary label and disagreement, can be used
to effectively generate soft labels. Training classifiers with these soft
labels then leads to improved performance and calibration on the hard label
test set.
- Abstract(参考訳): 本稿では,目的とする単一ラベル分類タスクに対する共通データアノテーションとトレーニング手法の限界に対処する。
通常、アノテータのアノテータはサンプル毎に1つのラベルしか提供せず、アノテータの不一致は、多数決によって最終ハードラベルが決定されるときに破棄される。
私たちはこの従来のアプローチに挑戦し、データサンプルの曖昧さとコンテキストの欠如のために適切なラベルを決定することは困難であることを認めます。
このようなあいまいなアノテーションから情報を破棄する代わりに、soft labelメソッドはそれらをトレーニングに利用します。
以上の結果から,信頼度,二次ラベル,不一致などの付加的な注釈情報を用いて,ソフトラベルを効果的に生成できることが示唆された。
これらのソフトラベルを用いたトレーニング分類器は、ハードラベルテストセットのパフォーマンスとキャリブレーションを改善する。
関連論文リスト
- Determined Multi-Label Learning via Similarity-Based Prompt [12.428779617221366]
マルチラベル分類では、各トレーニングインスタンスは複数のクラスラベルに同時に関連付けられている。
この問題を軽減するために,textitDetermined Multi-Label Learning (DMLL) と呼ばれる新しいラベル設定を提案する。
論文 参考訳(メタデータ) (2024-03-25T07:08:01Z) - Robust Assignment of Labels for Active Learning with Sparse and Noisy
Annotations [0.17188280334580192]
監視された分類アルゴリズムは、世界中の多くの現実の問題を解決するために使用される。
残念なことに、多くのタスクに対して良質なアノテーションを取得することは、実際に行うには不可能か、あるいはコストがかかりすぎます。
サンプル空間のラベルのない部分を利用する2つの新しいアノテーション統一アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-25T19:40:41Z) - Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
本稿では,トレーニング中にノイズラベル付きおよび未処理データを受け入れる条件付き画像生成フレームワークを提案する。
本稿では,ラベルのないデータに新たなラベルを割り当てながら,逆行訓練にインスタンスワイドを割り当てるソフトカリキュラム学習を提案する。
実験により,本手法は,定量および定性性能の両面において,既存の半教師付き・ラベル付きロバストな手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-17T08:31:59Z) - Partial-Label Regression [54.74984751371617]
部分ラベル学習は、弱い教師付き学習環境であり、各トレーニング例に候補ラベルのセットをアノテートすることができる。
部分ラベル学習に関する従来の研究は、候補ラベルがすべて離散的な分類設定のみに焦点を当てていた。
本稿では,各トレーニング例に実値付き候補ラベルのセットをアノテートした部分ラベル回帰を初めて検討する。
論文 参考訳(メタデータ) (2023-06-15T09:02:24Z) - Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations [91.67511167969934]
imprecise label learning (ILL)は、様々な不正確なラベル構成で学習を統合するためのフレームワークである。
我々は、ILLが部分ラベル学習、半教師付き学習、雑音ラベル学習にシームレスに適応できることを実証した。
論文 参考訳(メタデータ) (2023-05-22T04:50:28Z) - ScarceNet: Animal Pose Estimation with Scarce Annotations [74.48263583706712]
ScarceNetは、ラベルのない画像のための人工ラベルを生成するための擬似ラベルベースのアプローチである。
我々は、既存の半教師付きアプローチを大きなマージンで上回る、挑戦的なAP-10Kデータセットに対するアプローチを評価する。
論文 参考訳(メタデータ) (2023-03-27T09:15:53Z) - Learning from Stochastic Labels [8.178975818137937]
マルチクラスインスタンスのアノテーションは、機械学習の分野で重要なタスクである。
本稿では,これらのラベルから学習するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-02-01T08:04:27Z) - Acknowledging the Unknown for Multi-label Learning with Single Positive
Labels [65.5889334964149]
伝統的に、全ての無注釈ラベルは、単一正のマルチラベル学習(SPML)において負のラベルとして仮定される。
本研究では, 予測確率のエントロピーを最大化するエントロピー最大化(EM)損失を提案する。
非通知ラベルの正負ラベル不均衡を考慮し、非対称耐性戦略とより精密な監視を行うセルフペースト手順を備えた非対称擬似ラベル(APL)を提案する。
論文 参考訳(メタデータ) (2022-03-30T11:43:59Z) - Learning to Purify Noisy Labels via Meta Soft Label Corrector [49.92310583232323]
最近のディープニューラルネットワーク(DNN)は、ノイズラベルによるバイアス付きトレーニングデータに容易に適合する。
ラベル修正戦略はこの問題を軽減するために一般的に用いられる。
メタ学習モデルを提案する。
論文 参考訳(メタデータ) (2020-08-03T03:25:17Z) - Limitations of weak labels for embedding and tagging [0.0]
環境音響分析における多くのデータセットやアプローチは、弱いラベル付きデータを用いており、強いラベルで全てのデータサンプルに注釈をつけるのは高すぎるため、弱いラベルが用いられる。
本稿では,弱いラベルを含む教師付き学習問題を定式化し,他の課題とは対照的に,強いラベルと弱いラベルの違いに着目したデータセットを作成する。
論文 参考訳(メタデータ) (2020-02-05T08:54:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。