Vision Transformers for Weakly-Supervised Microorganism Enumeration
- URL: http://arxiv.org/abs/2412.02250v1
- Date: Tue, 03 Dec 2024 08:27:20 GMT
- Title: Vision Transformers for Weakly-Supervised Microorganism Enumeration
- Authors: Javier Ureña Santiago, Thomas Ströhle, Antonio Rodríguez-Sánchez, Ruth Breu,
- Abstract summary: This study conducts a comparative analysis of vision transformers (ViTs) for weakly-supervised counting in microorganism enumeration.
We trained different versions of ViTs as the architectural backbone for feature extraction using four microbiology datasets.
Results indicate that while ResNets perform better overall, ViTs performance demonstrates competent results across all datasets.
- Score: 0.0
- License:
- Abstract: Microorganism enumeration is an essential task in many applications, such as assessing contamination levels or ensuring health standards when evaluating surface cleanliness. However, it's traditionally performed by human-supervised methods that often require manual counting, making it tedious and time-consuming. Previous research suggests automating this task using computer vision and machine learning methods, primarily through instance segmentation or density estimation techniques. This study conducts a comparative analysis of vision transformers (ViTs) for weakly-supervised counting in microorganism enumeration, contrasting them with traditional architectures such as ResNet and investigating ViT-based models such as TransCrowd. We trained different versions of ViTs as the architectural backbone for feature extraction using four microbiology datasets to determine potential new approaches for total microorganism enumeration in images. Results indicate that while ResNets perform better overall, ViTs performance demonstrates competent results across all datasets, opening up promising lines of research in microorganism enumeration. This comparative study contributes to the field of microbial image analysis by presenting innovative approaches to the recurring challenge of microorganism enumeration and by highlighting the capabilities of ViTs in the task of regression counting.
Related papers
- Evaluation of Activated Sludge Settling Characteristics from Microscopy Images with Deep Convolutional Neural Networks and Transfer Learning [7.636901972162706]
This study presents an innovative computer vision-based approach to assess activated sludge-settling characteristics.
Implementing the transfer learning of deep convolutional neural network (CNN) models, this approach aims to overcome the limitations of existing quantitative image analysis techniques.
Various CNN architectures, including Inception v3, ResNet18, ResNet152, ConvNeXt-nano, and ConvNeXt-S, were tested to evaluate their performance in predicting sludge settling characteristics.
arXiv Detail & Related papers (2024-02-14T18:13:37Z) - Transformer-based Detection of Microorganisms on High-Resolution Petri
Dish Images [13.634866461329224]
Medical or pharmaceutical processes have strict guidelines regarding continuous hygiene monitoring.
This often involves the labor-intensive task of manually counting microorganisms in Petri dishes by trained personnel.
We introduce AttnPAFPN, a high-resolution detection pipeline that leverages a novel transformer variation, the efficient-global self-attention mechanism.
arXiv Detail & Related papers (2023-08-18T10:07:38Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Application of the YOLOv5 Model for the Detection of Microobjects in the
Marine Environment [101.18253437732933]
The efficiency of using the YOLOV5 machine learning model for solving the problem of automatic de-tection and recognition of micro-objects in the marine environment is studied.
arXiv Detail & Related papers (2022-11-28T10:58:50Z) - Graph Neural Networks for Microbial Genome Recovery [64.91162205624848]
We propose to use Graph Neural Networks (GNNs) to leverage the assembly graph when learning contig representations for metagenomic binning.
Our method, VaeG-Bin, combines variational autoencoders for learning latent representations of the individual contigs, with GNNs for refining these representations by taking into account the neighborhood structure of the contigs in the assembly graph.
arXiv Detail & Related papers (2022-04-26T12:49:51Z) - Video-based Facial Micro-Expression Analysis: A Survey of Datasets,
Features and Algorithms [52.58031087639394]
micro-expressions are involuntary and transient facial expressions.
They can provide important information in a broad range of applications such as lie detection, criminal detection, etc.
Since micro-expressions are transient and of low intensity, their detection and recognition is difficult and relies heavily on expert experiences.
arXiv Detail & Related papers (2022-01-30T05:14:13Z) - Deep neural networks approach to microbial colony detection -- a
comparative analysis [52.77024349608834]
This study investigates the performance of three deep learning approaches for object detection on the AGAR dataset.
The achieved results may serve as a benchmark for future experiments.
arXiv Detail & Related papers (2021-08-23T12:06:00Z) - Multiclass Yeast Segmentation in Microstructured Environments with Deep
Learning [20.456742449675904]
We present convolutional neural networks trained for multiclass segmenting of individual yeast cells.
We showcase the method's contribution to segmenting yeast in microstructured environments with a typical synthetic biology application.
arXiv Detail & Related papers (2020-11-16T16:16:13Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.