Evaluation of Activated Sludge Settling Characteristics from Microscopy Images with Deep Convolutional Neural Networks and Transfer Learning
- URL: http://arxiv.org/abs/2402.09367v3
- Date: Thu, 4 Jul 2024 14:19:47 GMT
- Title: Evaluation of Activated Sludge Settling Characteristics from Microscopy Images with Deep Convolutional Neural Networks and Transfer Learning
- Authors: Sina Borzooei, Leonardo Scabini, Gisele Miranda, Saba Daneshgar, Lukas Deblieck, Piet De Langhe, Odemir Bruno, Bernard De Baets, Ingmar Nopens, Elena Torfs,
- Abstract summary: This study presents an innovative computer vision-based approach to assess activated sludge-settling characteristics.
Implementing the transfer learning of deep convolutional neural network (CNN) models, this approach aims to overcome the limitations of existing quantitative image analysis techniques.
Various CNN architectures, including Inception v3, ResNet18, ResNet152, ConvNeXt-nano, and ConvNeXt-S, were tested to evaluate their performance in predicting sludge settling characteristics.
- Score: 7.636901972162706
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Microbial communities play a key role in biological wastewater treatment processes. Activated sludge settling characteristics, for example, are affected by microbial community composition, varying by changes in operating conditions and influent characteristics of wastewater treatment plants (WWTPs). Timely assessment and prediction of changes in microbial composition leading to settling problems, such as filamentous bulking (FB), can prevent operational challenges, reductions in treatment efficiency, and adverse environmental impacts. This study presents an innovative computer vision-based approach to assess activated sludge-settling characteristics based on the morphological properties of flocs and filaments in microscopy images. Implementing the transfer learning of deep convolutional neural network (CNN) models, this approach aims to overcome the limitations of existing quantitative image analysis techniques. The offline microscopy image dataset was collected over two years, with weekly sampling at a full-scale industrial WWTP in Belgium. Multiple data augmentation techniques were employed to enhance the generalizability of the CNN models. Various CNN architectures, including Inception v3, ResNet18, ResNet152, ConvNeXt-nano, and ConvNeXt-S, were tested to evaluate their performance in predicting sludge settling characteristics. The sludge volume index was used as the final prediction variable, but the method can easily be adjusted to predict any other settling metric of choice. The results showed that the suggested CNN-based approach provides less labour-intensive, objective, and consistent assessments, while transfer learning notably minimises the training phase, resulting in a generalizable system that can be employed in real-time applications.
Related papers
- Autonomous Droplet Microfluidic Design Framework with Large Language Models [0.6827423171182153]
This study presents MicroFluidic-LLMs, a framework designed for processing and feature extraction.
It overcomes processing challenges by transforming the content into a linguistic format and leveraging pre-trained large language models.
We demonstrate that our MicroFluidic-LLMs framework can empower deep neural network models to be highly effective and straightforward.
arXiv Detail & Related papers (2024-11-11T03:20:53Z) - CoTCoNet: An Optimized Coupled Transformer-Convolutional Network with an Adaptive Graph Reconstruction for Leukemia Detection [0.3573481101204926]
We propose an optimized Coupled Transformer Convolutional Network (CoTCoNet) framework for the classification of leukemia.
Our framework captures comprehensive global features and scalable spatial patterns, enabling the identification of complex and large-scale hematological features.
It achieves remarkable accuracy and F1-Score rates of 0.9894 and 0.9893, respectively.
arXiv Detail & Related papers (2024-10-11T13:31:28Z) - PhagoStat a scalable and interpretable end to end framework for
efficient quantification of cell phagocytosis in neurodegenerative disease
studies [0.0]
We introduce an end-to-end, scalable, and versatile real-time framework for quantifying and analyzing phagocytic activity.
Our proposed pipeline is able to process large data-sets and includes a data quality verification module.
We apply our pipeline to analyze microglial cell phagocytosis in FTD and obtain statistically reliable results.
arXiv Detail & Related papers (2023-04-26T18:10:35Z) - Application of the YOLOv5 Model for the Detection of Microobjects in the
Marine Environment [101.18253437732933]
The efficiency of using the YOLOV5 machine learning model for solving the problem of automatic de-tection and recognition of micro-objects in the marine environment is studied.
arXiv Detail & Related papers (2022-11-28T10:58:50Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z) - Learning-based Defect Recognition for Quasi-Periodic Microscope Images [0.0]
We propose a semi-supervised machine learning method that assists in the detection of lattice defects from atomic resolution microscope images.
It involves a convolutional neural network that classifies image patches as defective or non-defective, a graph-based that chooses one non-defective patch as a model, and finally an automatically generated convolutional filter bank.
The algorithm is tested on III-V/Si crystalline materials and successfully evaluated against different metrics, showing promising results even for extremely small training data sets.
arXiv Detail & Related papers (2020-07-02T18:00:02Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.