論文の概要: Technical Report on Reinforcement Learning Control on the Lucas-Nülle Inverted Pendulum
- arxiv url: http://arxiv.org/abs/2412.02264v1
- Date: Tue, 03 Dec 2024 08:37:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:40:47.710168
- Title: Technical Report on Reinforcement Learning Control on the Lucas-Nülle Inverted Pendulum
- Title(参考訳): ルーカス・ニュル反転振子の強化学習制御に関する技術報告
- Authors: Maximilian Schenke, Shalbus Bukarov,
- Abstract要約: 強化学習(Reinforcement Learning, RL)は, 植物系モデルを必要としない最適制御問題に適用できる。
このコントリビューションは、Lucas-N"ulle社が提供する教育ハードウェアに適用可能なRLフレームワークをターゲットにしている。
実際の学習は、対応する計算をリアルタイム制御コンピュータから切り離し、異なるハードウェアにアウトソーシングすることで実現される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The discipline of automatic control is making increased use of concepts that originate from the domain of machine learning. Herein, reinforcement learning (RL) takes an elevated role, as it is inherently designed for sequential decision making, and can be applied to optimal control problems without the need for a plant system model. To advance education of control engineers and operators in this field, this contribution targets an RL framework that can be applied to educational hardware provided by the Lucas-N\"ulle company. Specifically, the goal of inverted pendulum control is pursued by means of RL, including both, swing-up and stabilization within a single holistic design approach. Herein, the actual learning is enabled by separating corresponding computations from the real-time control computer and outsourcing them to a different hardware. This distributed architecture, however, necessitates communication of the involved components, which is realized via CAN bus. The experimental proof of concept is presented with an applied safeguarding algorithm that prevents the plant from being operated harmfully during the trial-and-error training phase.
- Abstract(参考訳): 自動制御の規律は、機械学習の領域から生まれた概念を多用している。
ここでは、強化学習(RL)は、本質的にシーケンシャルな意思決定のために設計されており、プラントシステムモデルを必要としない最適制御問題に適用できるため、高い役割を担っている。
この分野での制御技術者とオペレーターの教育を促進するため、この貢献はLucas-N\ulle社が提供する教育ハードウェアに適用可能なRLフレームワークをターゲットにしている。
具体的には、倒立振子制御の目標は、単一の全体設計アプローチにおけるスイングアップと安定化の両方を含むRLによって追求される。
これにより、リアルタイム制御コンピュータから対応する計算を分離し、異なるハードウェアにアウトソーシングすることで、実際の学習を可能にする。
しかし、この分散アーキテクチャは、CANバスを介して実現される、関連するコンポーネントの通信を必要とする。
実験的な概念実証には, プラントが試行錯誤訓練期間中に有害に動作しないようにするための安全保護アルゴリズムが応用されている。
関連論文リスト
- A Safe Reinforcement Learning Algorithm for Supervisory Control of Power
Plants [7.1771300511732585]
モデルフリー強化学習(RL)は、制御タスクのための有望なソリューションとして登場した。
本稿では,監督制御のための近似ポリシ最適化に基づく確率制約付きRLアルゴリズムを提案する。
本手法は, 原子力プラント設計における負荷追従操作において, 違反距離と違反率の最小化を実現するものである。
論文 参考訳(メタデータ) (2024-01-23T17:52:49Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
自己指導型学習は、制御戦略を学ぶのに必要な人間のアノテーションとエンジニアリングの労力を減らす可能性がある。
我々の研究は、強化学習(RL)自体が自己監督的な問題であることを示す先行研究に基づいている。
コントラスト学習に基づく自己教師付きRLアルゴリズムは,実世界の画像に基づくロボット操作タスクを解くことができることを示す。
論文 参考訳(メタデータ) (2023-06-06T01:36:56Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
DRLをベースとしたエージェントの性能を最適化し,その動作を保証することが重要である。
本稿では,ドメイン知識を制約付きDRLトレーニングループに組み込む新しい手法を提案する。
我々の実験は、専門家の知識を活用するために我々のアプローチを用いることで、エージェントの安全性と性能が劇的に向上することを示した。
論文 参考訳(メタデータ) (2022-06-20T07:19:38Z) - Curriculum Based Reinforcement Learning of Grid Topology Controllers to
Prevent Thermal Cascading [0.19116784879310028]
本稿では,電力系統演算子のドメイン知識を強化学習フレームワークに統合する方法について述べる。
環境を改良することにより、報酬チューニングを伴うカリキュラムベースのアプローチをトレーニング手順に組み込む。
複数のシナリオに対する並列トレーニングアプローチは、エージェントをいくつかのシナリオに偏りなくし、グリッド操作の自然変動に対して堅牢にするために使用される。
論文 参考訳(メタデータ) (2021-12-18T20:32:05Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
本稿では,無線アクセスネットワーク(RAN)アプリケーションの安全管理のためのシンボル強化学習(SRL)アーキテクチャを提案する。
我々は、ユーザが所定のセルネットワークトポロジに対して高レベルの論理的安全性仕様を指定できる純粋に自動化された手順を提供する。
ユーザがシステムに意図仕様を設定するのを支援するために開発されたユーザインターフェース(UI)を導入し、提案するエージェントの動作の違いを検査する。
論文 参考訳(メタデータ) (2021-06-03T16:45:40Z) - RL-Controller: a reinforcement learning framework for active structural
control [0.0]
フレキシブルでスケーラブルなシミュレーション環境であるRL-Controllerを導入することで,アクティブコントローラを設計するための新しいRLベースのアプローチを提案する。
提案するフレームワークは,5階建てのベンチマークビルディングに対して,平均65%の削減率で,容易に学習可能であることを示す。
LQG 能動制御法との比較研究において,提案したモデルフリーアルゴリズムはより最適なアクチュエータ強制戦略を学習することを示した。
論文 参考訳(メタデータ) (2021-03-13T04:42:13Z) - Collision-Free Flocking with a Dynamic Squad of Fixed-Wing UAVs Using
Deep Reinforcement Learning [2.555094847583209]
深層強化学習(DRL)による分散型リーダ・フォロワリング制御問題に対処する。
我々は,すべてのフォロワーに対して共有制御ポリシーを学習するための新しい強化学習アルゴリズムCACER-IIを提案する。
その結果、可変長系状態を固定長埋め込みベクトルに符号化することができ、学習されたDRLポリシーをフォロワーの数や順序と独立にすることができる。
論文 参考訳(メタデータ) (2021-01-20T11:23:35Z) - Reinforcement Learning of Structured Control for Linear Systems with
Unknown State Matrix [0.0]
十分な安定性と性能保証と合わせて強化学習(RL)のアイデアを提示する。
このフレームワークによって実現される特別な制御構造は、多くの大規模サイバー物理システムで必要とされる分散学習制御である。
論文 参考訳(メタデータ) (2020-11-02T17:04:34Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。