論文の概要: MediaSpin: Exploring Media Bias Through Fine-Grained Analysis of News Headlines
- arxiv url: http://arxiv.org/abs/2412.02271v1
- Date: Tue, 03 Dec 2024 08:41:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:46:51.584816
- Title: MediaSpin: Exploring Media Bias Through Fine-Grained Analysis of News Headlines
- Title(参考訳): MediaSpin:ニュース記事の見出しを詳細に分析してメディアバイアスを探る
- Authors: Preetika Verma, Kokil Jaidka,
- Abstract要約: このコーパスには78,910対のニュース見出しとアノテーションが含まれており、13種類のメディアバイアスカテゴリが割り当てられている。
ニュース編集における自動バイアス検出のためのデータセットの有用性を示す。
- 参考スコア(独自算出の注目度): 12.636213065708318
- License:
- Abstract: In this paper, we introduce the MediaSpin dataset aiming to help in the development of models that can detect different forms of media bias present in news headlines, developed through human-supervised and -validated Large Language Model (LLM) labeling of media bias. This corpus comprises 78,910 pairs of news headlines and annotations with explanations of the 13 distinct types of media bias categories assigned. We demonstrate the usefulness of our dataset for automated bias detection in news edits.
- Abstract(参考訳): 本稿では,メディアバイアスのラベル付けによって,ニュースヘッドラインに存在する様々なメディアバイアスを検出するモデルの開発を支援するために,メディアSpinデータセットを紹介する。
このコーパスには78,910対のニュース見出しとアノテーションが含まれており、13種類のメディアバイアスカテゴリが割り当てられている。
ニュース編集における自動バイアス検出のためのデータセットの有用性を示す。
関連論文リスト
- Mapping the Media Landscape: Predicting Factual Reporting and Political Bias Through Web Interactions [0.7249731529275342]
本稿では,最近発表されたニュースメディアの信頼性評価手法の拡張を提案する。
大規模ニュースメディアハイパーリンクグラフ上での4つの強化学習戦略の分類性能を評価する。
本実験は,2つの難解なバイアス記述子,事実報告と政治的偏見を対象とし,情報源メディアレベルでの大幅な性能向上を示した。
論文 参考訳(メタデータ) (2024-10-23T08:18:26Z) - The Media Bias Taxonomy: A Systematic Literature Review on the Forms and
Automated Detection of Media Bias [5.579028648465784]
本稿は、2019年から2022年の間に発行された3140の論文を体系的にレビューし、メディアバイアスを検出するための計算方法の研究を要約する。
メディアバイアス検出は,近年,トランスフォーマーに基づく分類手法が顕著な進歩をもたらしている,非常に活発な研究分野であることを示す。
論文 参考訳(メタデータ) (2023-12-26T18:13:52Z) - Navigating News Narratives: A Media Bias Analysis Dataset [3.0821115746307672]
ニュースナラティブをナビゲートする:メディアバイアス分析データセット"は、メディアバイアスを検出し分析するツールの緊急ニーズに対処する包括的なデータセットである。
このデータセットは幅広いバイアスの範囲を含み、メディア研究と人工知能の分野でユニークな価値ある資産となっている。
論文 参考訳(メタデータ) (2023-11-30T19:59:19Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
本稿では,大規模ニュースコーパスにおけるニュースコンテンツから直接メディア選択バイアスのパターンを発見するために,スケーラブルなNLPシステムを構築する上での課題について検討する。
我々は,世界519のニュースソースから180万件のニュース記事のコーパスであるNELA-2020のケーススタディを通じて,フレームワークの能力を示す。
論文 参考訳(メタデータ) (2023-04-06T23:36:45Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
われわれは、2014年から2022年までの米国の主要メディアから、180万件のニュース記事の大規模なデータセットを使用している。
我々は、国内政治、経済問題、社会問題、外交の4つの主要なトピックに関連する、きめ細かいテーマの相違を定量化する。
以上の結果から,国内政治や社会問題においては,一定のメディア偏見が原因であることが示唆された。
論文 参考訳(メタデータ) (2023-03-28T03:31:37Z) - Computational Assessment of Hyperpartisanship in News Titles [55.92100606666497]
われわれはまず、超党派ニュースタイトル検出のための新しいデータセットを開発するために、人間の誘導する機械学習フレームワークを採用する。
全体的に右派メディアは比例的に超党派的なタイトルを使う傾向にある。
我々は、外国問題、政治システム、ニュースタイトルにおける過党主義を示唆する社会問題を含む3つの主要なトピックを識別する。
論文 参考訳(メタデータ) (2023-01-16T05:56:58Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Neural Media Bias Detection Using Distant Supervision With BABE -- Bias
Annotations By Experts [24.51774048437496]
本稿ではメディアバイアス研究のための頑健で多様なデータセットであるBABEについて述べる。
トピックとアウトレットの間でバランスが取れた3,700の文で構成されており、単語と文のレベルにメディアバイアスラベルが含まれている。
また,本データに基づいて,ニュース記事中のバイアス文を自動的に検出する手法も導入した。
論文 参考訳(メタデータ) (2022-09-29T05:32:55Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
様々な政治スペクトルの複数のニュース見出しから中立的な要約を生成する新しい課題を提案する。
最も興味深い観察の1つは、生成モデルは、事実的に不正確なコンテンツや検証不可能なコンテンツだけでなく、政治的に偏ったコンテンツにも幻覚を与えることができることである。
論文 参考訳(メタデータ) (2022-04-11T07:06:01Z) - MBIC -- A Media Bias Annotation Dataset Including Annotator
Characteristics [0.0]
メディア偏見、あるいはスライスされたニュース報道は、出来事に対する大衆の認識に重大な影響を与える可能性がある。
本稿では,自己開発アノテーションプラットフォームを用いて,そのようなデータをクラウドソーシングするための行列ベースの方法論を提案する。
メディアバイアスの事例を表す1,700のステートメントの最初のサンプルであるMBICも提示する。
論文 参考訳(メタデータ) (2021-05-20T15:05:17Z) - Viable Threat on News Reading: Generating Biased News Using Natural
Language Models [49.90665530780664]
公開されている言語モデルは、入力されたオリジナルニュースに基づいてバイアスのあるニュースコンテンツを確実に生成できることを示す。
また、制御可能なテキスト生成を用いて、多数の高品質な偏りのあるニュース記事を生成することができることを示す。
論文 参考訳(メタデータ) (2020-10-05T16:55:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。