Step-by-Step Guidance to Differential Anemia Diagnosis with Real-World Data and Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2412.02273v1
- Date: Tue, 03 Dec 2024 08:45:50 GMT
- Title: Step-by-Step Guidance to Differential Anemia Diagnosis with Real-World Data and Deep Reinforcement Learning
- Authors: Lillian Muyama, Estelle Lu, Geoffrey Cheminet, Jacques Pouchot, Bastien Rance, Anne-Isabelle Tropeano, Antoine Neuraz, Adrien Coulet,
- Abstract summary: Clinical diagnostic guidelines outline the key questions to answer to reach a diagnosis.
We aim to develop a model that learns from electronic health records to determine the optimal sequence of actions for accurate diagnosis.
- Score: 1.5272023683653024
- License:
- Abstract: Clinical diagnostic guidelines outline the key questions to answer to reach a diagnosis. Inspired by guidelines, we aim to develop a model that learns from electronic health records to determine the optimal sequence of actions for accurate diagnosis. Focusing on anemia and its sub-types, we employ deep reinforcement learning (DRL) algorithms and evaluate their performance on both a synthetic dataset, which is based on expert-defined diagnostic pathways, and a real-world dataset. We investigate the performance of these algorithms across various scenarios. Our experimental results demonstrate that DRL algorithms perform competitively with state-of-the-art methods while offering the significant advantage of progressively generating pathways to the suggested diagnosis, providing a transparent decision-making process that can guide and explain diagnostic reasoning.
Related papers
- Toward an Integrated Decision Making Framework for Optimized Stroke Diagnosis with DSA and Treatment under Uncertainty [0.0]
Current diagnostic methods, including Digital Subtraction Angiography (DSA), face limitations due to high costs and its invasive nature.
We propose a novel approach using a Partially Observable Markov Decision Process (POMDP) framework.
Our model integrates advanced diagnostic tools and treatment approaches with a decision-making algorithm that accounts for the inherent uncertainties in stroke diagnosis.
arXiv Detail & Related papers (2024-07-24T03:01:55Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - Deep Reinforcement Learning for Personalized Diagnostic Decision Pathways Using Electronic Health Records: A Comparative Study on Anemia and Systemic Lupus Erythematosus [1.7965876401882177]
We formulate the task of diagnosis as a sequential decision-making problem.
We study the use of Deep Reinforcement Learning (DRL) algorithms to learn the optimal sequence of actions to perform.
We develop two clinical use cases: Anemia diagnosis and Systemic Lupus Erythematosus diagnosis.
arXiv Detail & Related papers (2024-04-09T00:07:16Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
This study presents a LLM-based diagnostic system that enhances planning capabilities by emulating doctors.
By utilizing real patient electronic medical record data, we constructed simulated dialogues between virtual patients and doctors.
arXiv Detail & Related papers (2024-04-04T06:16:35Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - OpenClinicalAI: An Open and Dynamic Model for Alzheimer's Disease
Diagnosis [11.775648630734949]
Alzheimer's disease (AD) cannot be reversed or cured, but timely diagnosis can significantly reduce the burden of treatment and care.
Current research on AD diagnosis models usually regards the diagnosis task as a typical classification task.
We propose OpenClinicalAI for direct AD diagnosis in complex and uncertain clinical settings.
arXiv Detail & Related papers (2023-07-03T12:35:03Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Extracting Diagnosis Pathways from Electronic Health Records Using Deep
Reinforcement Learning [2.0191844627740254]
We aim to learn the optimal sequence of actions to perform in order to obtain a correct diagnosis from electronic health records.
We apply various deep reinforcement learning algorithms to this task and experiment on a synthetic but realistic dataset to differentially diagnose anemia.
arXiv Detail & Related papers (2023-05-10T16:36:54Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Anytime Diagnosis for Reconfiguration [52.77024349608834]
We introduce and analyze FlexDiag which is an anytime direct diagnosis approach.
We evaluate the algorithm with regard to performance and diagnosis quality using a configuration benchmark from the domain of feature models and an industrial configuration knowledge base from the automotive domain.
arXiv Detail & Related papers (2021-02-19T11:45:52Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.