Extracting Diagnosis Pathways from Electronic Health Records Using Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2305.06295v3
- Date: Wed, 15 Nov 2023 12:05:25 GMT
- Title: Extracting Diagnosis Pathways from Electronic Health Records Using Deep
Reinforcement Learning
- Authors: Lillian Muyama, Antoine Neuraz and Adrien Coulet
- Abstract summary: We aim to learn the optimal sequence of actions to perform in order to obtain a correct diagnosis from electronic health records.
We apply various deep reinforcement learning algorithms to this task and experiment on a synthetic but realistic dataset to differentially diagnose anemia.
- Score: 2.0191844627740254
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clinical diagnosis guidelines aim at specifying the steps that may lead to a
diagnosis. Inspired by guidelines, we aim to learn the optimal sequence of
actions to perform in order to obtain a correct diagnosis from electronic
health records. We apply various deep reinforcement learning algorithms to this
task and experiment on a synthetic but realistic dataset to differentially
diagnose anemia and its subtypes and particularly evaluate the robustness of
various approaches to noise and missing data. Experimental results show that
the deep reinforcement learning algorithms show competitive performance
compared to the state-of-the-art methods with the added advantage that they
enable the progressive generation of a pathway to the suggested diagnosis,
which can both guide and explain the decision process.
Related papers
- MSDiagnosis: An EMR-based Dataset for Clinical Multi-Step Diagnosis [9.013608944595312]
We propose a multi-step diagnostic task and annotate a clinical diagnostic dataset (MSDiagnosis)
This dataset includes primary diagnosis, differential diagnosis, and final diagnosis questions.
arXiv Detail & Related papers (2024-08-19T14:31:57Z) - Toward an Integrated Decision Making Framework for Optimized Stroke Diagnosis with DSA and Treatment under Uncertainty [0.0]
Current diagnostic methods, including Digital Subtraction Angiography (DSA), face limitations due to high costs and its invasive nature.
We propose a novel approach using a Partially Observable Markov Decision Process (POMDP) framework.
Our model integrates advanced diagnostic tools and treatment approaches with a decision-making algorithm that accounts for the inherent uncertainties in stroke diagnosis.
arXiv Detail & Related papers (2024-07-24T03:01:55Z) - Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning [0.0]
Parkinson's Disease (PD) is a progressive neurodegenerative disorder that significantly impacts both motor and non-motor functions, including speech.
This paper provides a comprehensive review of methods for PD recognition using speech data, highlighting advances in machine learning and data-driven approaches.
Various classification algorithms are explored, including logistic regression, SVM, and neural networks, with and without feature selection.
Our findings indicate that specific acoustic features and advanced machine-learning techniques can effectively differentiate between individuals with PD and healthy controls.
arXiv Detail & Related papers (2024-07-22T23:24:02Z) - Deep Reinforcement Learning for Personalized Diagnostic Decision Pathways Using Electronic Health Records: A Comparative Study on Anemia and Systemic Lupus Erythematosus [1.7965876401882177]
We formulate the task of diagnosis as a sequential decision-making problem.
We study the use of Deep Reinforcement Learning (DRL) algorithms to learn the optimal sequence of actions to perform.
We develop two clinical use cases: Anemia diagnosis and Systemic Lupus Erythematosus diagnosis.
arXiv Detail & Related papers (2024-04-09T00:07:16Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
symptom checking systems inquire users for their symptoms and perform a rapid and affordable medical assessment of their condition.
We propose a new approach based on the supervised learning of neural models with logic regularization.
Our experiments show that the proposed approach outperforms the best existing methods in the accuracy of diagnosis when the number of diagnoses and symptoms is large.
arXiv Detail & Related papers (2022-06-02T07:57:17Z) - Efficient Symptom Inquiring and Diagnosis via Adaptive Alignment of
Reinforcement Learning and Classification [0.6415701940560564]
We first propose a novel method for medical automatic diagnosis with symptom inquiring and disease diagnosing formulated as a reinforcement learning task and a classification task, respectively.
We create a new dataset extracted from the MedlinePlus knowledge base that contains more diseases and more complete symptom information.
Experimental evaluation results show that our method outperforms three recent state-of-the-art methods on different datasets.
arXiv Detail & Related papers (2021-12-01T11:25:42Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.