論文の概要: A Comprehensive Evaluation of Large Language Models on Aspect-Based Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2412.02279v1
- Date: Tue, 03 Dec 2024 08:54:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:50:33.241235
- Title: A Comprehensive Evaluation of Large Language Models on Aspect-Based Sentiment Analysis
- Title(参考訳): アスペクトベース感性分析による大規模言語モデルの包括的評価
- Authors: Changzhi Zhou, Dandan Song, Yuhang Tian, Zhijing Wu, Hao Wang, Xinyu Zhang, Jun Yang, Ziyi Yang, Shuhao Zhang,
- Abstract要約: 大規模言語モデル(LLM)は自然言語処理の分野で注目を集めている。
本稿では,ABSA分野におけるLLMの包括的評価に光を当て,13のデータセット,8のABSAサブタスク,6のLLMを含む。
実験により,LLMは微調整型小言語モデル (SLM) と比較して,微調整型に依存したパラダイムで,新しい最先端性能を実現することが示された。
- 参考スコア(独自算出の注目度): 26.505386645322506
- License:
- Abstract: Recently, Large Language Models (LLMs) have garnered increasing attention in the field of natural language processing, revolutionizing numerous downstream tasks with powerful reasoning and generation abilities. For example, In-Context Learning (ICL) introduces a fine-tuning-free paradigm, allowing out-of-the-box LLMs to execute downstream tasks by analogy learning without any fine-tuning. Besides, in a fine-tuning-dependent paradigm where substantial training data exists, Parameter-Efficient Fine-Tuning (PEFT), as the cost-effective methods, enable LLMs to achieve excellent performance comparable to full fine-tuning. However, these fascinating techniques employed by LLMs have not been fully exploited in the ABSA field. Previous works probe LLMs in ABSA by merely using randomly selected input-output pairs as demonstrations in ICL, resulting in an incomplete and superficial evaluation. In this paper, we shed light on a comprehensive evaluation of LLMs in the ABSA field, involving 13 datasets, 8 ABSA subtasks, and 6 LLMs. Specifically, we design a unified task formulation to unify ``multiple LLMs for multiple ABSA subtasks in multiple paradigms.'' For the fine-tuning-dependent paradigm, we efficiently fine-tune LLMs using instruction-based multi-task learning. For the fine-tuning-free paradigm, we propose 3 demonstration selection strategies to stimulate the few-shot abilities of LLMs. Our extensive experiments demonstrate that LLMs achieve a new state-of-the-art performance compared to fine-tuned Small Language Models (SLMs) in the fine-tuning-dependent paradigm. More importantly, in the fine-tuning-free paradigm where SLMs are ineffective, LLMs with ICL still showcase impressive potential and even compete with fine-tuned SLMs on some ABSA subtasks.
- Abstract(参考訳): 近年、Large Language Models (LLMs) は自然言語処理の分野で注目を集め、強力な推論と生成能力を持つ下流タスクに革命をもたらした。
例えば、ICL(In-Context Learning)は微調整のないパラダイムを導入し、アウト・オブ・ザ・ボックスのLCMが微調整なしでアナログ学習によって下流タスクを実行できるようにする。
さらに、かなりの訓練データが存在する微調整依存パラダイムでは、パラメータ効率の良い微調整(PEFT)がコスト効率のよい方法であり、LCMが完全な微調整に匹敵する優れた性能を達成することができる。
しかし,これらの技術はABSA分野において十分に活用されていない。
ICLのデモとしてランダムに選択された入出力ペアを使用すれば,従来のABSAのLLMを探索し,不完全かつ表面的な評価が得られた。
本稿では,ABSA分野におけるLLMの包括的評価に光を当て,13のデータセット,8のABSAサブタスク,6のLLMを含む。
具体的には、複数のABSAサブタスクに対する ``multiple LLMs を複数のパラダイムで統一する統合タスクの定式化を設計する。
「「微調整依存パラダイム」では、命令ベースのマルチタスク学習を用いて効率よくLLMを微調整する。
微調整不要なパラダイムに対して,LLMの少数ショット能力を刺激する3つの実演選択戦略を提案する。
我々の広範な実験により,LLMは細調整された小言語モデル(SLM)と比較して,細調整に依存したパラダイムで新しい最先端性能を実現することが実証された。
さらに重要なことは、SLMが非効率な微調整のないパラダイムでは、ICLを持つLSMは印象的なポテンシャルを示し、一部のABSAサブタスクで微調整されたSLMと競合することです。
関連論文リスト
- LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
本稿では,l-MLLMからs-MLLMへ知識を伝達する新しいフレームワークを提案する。
具体的には,l-MLLMとs-MLLMの視覚的テキスト出力分布のばらつきを最小限に抑えるために,MDist(Multimodal Distillation)を導入する。
また,S-MLLMの可能性を完全に活用するための3段階学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T17:41:28Z) - Stacking Small Language Models for Generalizability [0.0]
大規模言語モデル(LLM)は、異なる自然言語ベンチマークで強いパフォーマンスを一般化する。
本稿では,言語モデルの微調整スタック (FSLM) と呼ばれる新しいアプローチを提案する。
特定のタスクを実行するために各SLMを微調整することにより、このアプローチは、特定のSLMが責任を負う複数の低レベルステップに高レベル推論を分解する。
その結果、FSLMはトレーニングと推論のコストを低減し、各SLMが後続のSLMと自然言語を介して通信するので、モデルの解釈性を向上させることができる。
論文 参考訳(メタデータ) (2024-10-21T01:27:29Z) - In-Context Learning with Reinforcement Learning for Incomplete Utterance Rewriting [33.89176174108559]
大規模言語モデル(LLM)の文脈内学習は、いくつかの例で拡張された命令に基づいて予測を行う。
ICLの既存の例選択方法はスパースまたは高密度レトリバーを使用し、有効性能を導出する。
本稿では,言語モデルセレクタとLLMジェネレータから構成される実例選択(RLS)のためのポリシーベース強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-23T12:32:12Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - Scaling Sentence Embeddings with Large Language Models [43.19994568210206]
本研究では,文埋め込み性能の向上を目的としたテキスト内学習手法を提案する。
提案手法では,従来のプロンプトに基づく表現手法を自己回帰モデルに適用する。
モデルサイズをスケールすることで、数千億以上のパラメータへのスケーリングが意味的なテキスト類似性タスクのパフォーマンスを損なうことが分かる。
論文 参考訳(メタデータ) (2023-07-31T13:26:03Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
大規模言語モデル(LLM)はAIの分野に革命をもたらし、様々なタスクで前例のない能力を示している。
本稿では,LLMのパワーを利用する効率的なLLM推論パイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:36:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。