論文の概要: AH-OCDA: Amplitude-based Curriculum Learning and Hopfield Segmentation Model for Open Compound Domain Adaptation
- arxiv url: http://arxiv.org/abs/2412.02280v1
- Date: Tue, 03 Dec 2024 08:55:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:49:42.127572
- Title: AH-OCDA: Amplitude-based Curriculum Learning and Hopfield Segmentation Model for Open Compound Domain Adaptation
- Title(参考訳): AH-OCDA:オープン複合ドメイン適応のための振幅に基づくカリキュラム学習とホップフィールドセグメンテーションモデル
- Authors: Jaehyun Choi, Junwon Ko, Dong-Jae Lee, Junmo Kim,
- Abstract要約: オープン複合ドメイン適応のための振幅に基づくカリキュラム学習とホップフィールドセグメンテーションモデルについて述べる。
AH-OCDAは2つのOCDAベンチマークと拡張オープンドメインで最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 25.454057390028115
- License:
- Abstract: Open compound domain adaptation (OCDA) is a practical domain adaptation problem that consists of a source domain, target compound domain, and unseen open domain. In this problem, the absence of domain labels and pixel-level segmentation labels for both compound and open domains poses challenges to the direct application of existing domain adaptation and generalization methods. To address this issue, we propose Amplitude-based curriculum learning and a Hopfield segmentation model for Open Compound Domain Adaptation (AH-OCDA). Our method comprises two complementary components: 1) amplitude-based curriculum learning and 2) Hopfield segmentation model. Without prior knowledge of target domains within the compound domains, amplitude-based curriculum learning gradually induces the semantic segmentation model to adapt from the near-source compound domain to the far-source compound domain by ranking unlabeled compound domain images through Fast Fourier Transform (FFT). Additionally, the Hopfield segmentation model maps segmentation feature distributions from arbitrary domains to the feature distributions of the source domain. AH-OCDA achieves state-of-the-art performance on two OCDA benchmarks and extended open domains, demonstrating its adaptability to continuously changing compound domains and unseen open domains.
- Abstract(参考訳): オープン・コンプレックス・ドメイン適応(OCDA)は、ソース・ドメイン、ターゲット・コンプレックス・ドメイン、未確認のオープン・ドメインからなる実用的なドメイン適応問題である。
この問題において、複合領域と開領域の両方に対して、ドメインラベルとピクセルレベルのセグメンテーションラベルが存在しないことは、既存のドメイン適応と一般化法の直接的な適用に困難をもたらす。
この問題に対処するために、AH-OCDA(Open Compound Domain Adaptation)のための振幅に基づくカリキュラム学習とホップフィールドセグメンテーションモデルを提案する。
本手法は2つの相補的成分から構成される。
1)振幅に基づくカリキュラム学習
2)ホップフィールド分割モデル
振幅に基づくカリキュラム学習は、複合ドメイン内の対象ドメインの事前の知識がなければ、Fast Fourier Transform (FFT)を介してラベルなしの複合ドメイン画像のランク付けによって、近ソースの複合ドメインから遠ソースの複合ドメインへの適応を、意味セグメンテーションモデルにより徐々に誘導する。
さらに、Hopfieldセグメンテーションモデルは、任意のドメインからソースドメインの特徴分布へのセグメンテーション特徴分布をマッピングする。
AH-OCDAは2つのOCDAベンチマークと拡張されたオープンドメインに対して最先端のパフォーマンスを達成し、コンプレックスドメインを継続的に変更し、未確認のオープンドメインに適応可能であることを示す。
関連論文リスト
- Multi-Source Collaborative Gradient Discrepancy Minimization for
Federated Domain Generalization [27.171533040583117]
Federated Domain Generalizationは、複数の分散ソースドメインからドメイン不変モデルを学び、目に見えないターゲットドメインにデプロイすることを目的としている。
フェデレートされた領域一般化のためのマルチソース協調グラディエント離散最小化法(MCGDM)を提案する。
論文 参考訳(メタデータ) (2024-01-05T01:21:37Z) - Meta-causal Learning for Single Domain Generalization [102.53303707563612]
単一ドメインの一般化は、単一のトレーニングドメイン(ソースドメイン)からモデルを学び、それを複数の未確認テストドメイン(ターゲットドメイン)に適用することを目的としている。
既存の方法は、ターゲットドメインをカバーするためのトレーニングドメインの配布拡大に重点を置いているが、ソースとターゲットドメイン間のドメインシフトを見積もることはできない。
そこで本研究では,まず,対象ドメインとして補助ドメインを構築することによってドメインシフトをシミュレートし,ドメインシフトの原因を解析し,最終的にモデル適応のためのドメインシフトを低減する,新たな学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-07T15:46:38Z) - ML-BPM: Multi-teacher Learning with Bidirectional Photometric Mixing for
Open Compound Domain Adaptation in Semantic Segmentation [78.19743899703052]
オープン化合物ドメイン適応(OCDA)は、ターゲットドメインを複数の未知の同質体の化合物とみなしている。
目的とするサブドメインに適応するために,双方向光度ミキシングを用いたマルチテキサフレームワークを提案する。
適応蒸留を行い、学生モデルを学習し、整合性正規化を適用して生徒の一般化を改善する。
論文 参考訳(メタデータ) (2022-07-19T03:30:48Z) - ConDA: Unsupervised Domain Adaptation for LiDAR Segmentation via
Regularized Domain Concatenation [10.65673380743972]
ConDAは、LiDARセグメンテーションのための結合ベースのドメイン適応フレームワークである。
本稿では, エイリアスや偽ラベルによる負の効果を低減するために, アンチエイリアス・レギュレータとエントロピー・アグリゲータを提案する。
論文 参考訳(メタデータ) (2021-11-30T09:53:24Z) - IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID [58.46907388691056]
ソースとターゲットドメイン間のブリッジは、UDA re-IDタスクに対処するために有効である、と我々は主張する。
中間ドメインの表現をオンザフライで生成するための中間ドメインモジュール(IDM)を提案する。
提案手法は,UDAのre-IDタスクに共通するタスクにおいて,最先端のタスクよりも大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2021-08-05T07:19:46Z) - Multi-Source Domain Adaptation with Collaborative Learning for Semantic
Segmentation [32.95273803359897]
マルチソース非監視ドメイン適応(MSDA)は、複数のラベル付きソースドメインで訓練されたモデルをラベル付きターゲットドメインに適応することを目的とする。
セマンティックセグメンテーションのための協調学習に基づく新しいマルチソースドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-08T12:51:42Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
セマンティックセグメンテーションのための原則的メタラーニングに基づくOCDAアプローチを提案する。
対象ドメインを複数のサブターゲットドメインに,教師なしの方法で抽出した画像スタイルでクラスタリングする。
その後、メタラーニングがデプロイされ、スタイルコードに条件付きでサブターゲットドメイン固有の予測を融合するように学習される。
モデルに依存しないメタラーニング(MAML)アルゴリズムにより,モデルをオンライン更新することを学び,一般化をさらに改善する。
論文 参考訳(メタデータ) (2020-12-15T13:21:54Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
深層畳み込みニューラルネットワーク(CNN)内のソースドメインとターゲットドメインにセマンティックセグメンテーションネットワークを適用する既存の技術は、対象ドメイン自身や推定カテゴリ内のクラス間変異を考慮していない。
学習可能なクラスタリングモジュールと、クロスドメイングルーピングとアライメントと呼ばれる新しいドメイン適応フレームワークを導入する。
本手法はセマンティクスセグメンテーションにおける適応性能を一貫して向上させ,様々なドメイン適応設定において最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-15T11:36:21Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
ドメイン適応は、あるラベル付きソースドメインと、わずかにラベル付けまたはラベル付けされていないターゲットドメインの間のドメインシフトをブリッジするために、転送可能なモデルを学ぶことを目的としています。
近年のマルチソース領域適応法(MDA)では,ソースとターゲット間の画素レベルのアライメントは考慮されていない。
これらの課題に対処するための新しいMDAフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T21:22:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。