Low-Contrast-Enhanced Contrastive Learning for Semi-Supervised Endoscopic Image Segmentation
- URL: http://arxiv.org/abs/2412.02314v2
- Date: Fri, 31 Jan 2025 09:29:44 GMT
- Title: Low-Contrast-Enhanced Contrastive Learning for Semi-Supervised Endoscopic Image Segmentation
- Authors: Lingcong Cai, Yun Li, Xiaomao Fan, Kaixuan Song, Ruxin Wang, Wenbin Lei,
- Abstract summary: We propose a novel semi-supervised segmentation framework termed LoCo via low-contrast-enhanced contrastive learning (LCC)
LCC incorporates two advanced strategies to enhance the distinctiveness of low-contrast pixels, enabling models to segment low-contrast pixels among malignant tumors, benign tumors, and normal tissues.
LoCo achieves state-of-the-art results, significantly outperforming previous methods.
- Score: 5.70832160492074
- License:
- Abstract: The segmentation of endoscopic images plays a vital role in computer-aided diagnosis and treatment. The advancements in deep learning have led to the employment of numerous models for endoscopic tumor segmentation, achieving promising segmentation performance. Despite recent advancements, precise segmentation remains challenging due to limited annotations and the issue of low contrast. To address these issues, we propose a novel semi-supervised segmentation framework termed LoCo via low-contrast-enhanced contrastive learning (LCC). This innovative approach effectively harnesses the vast amounts of unlabeled data available for endoscopic image segmentation, improving both accuracy and robustness in the segmentation process. Specifically, LCC incorporates two advanced strategies to enhance the distinctiveness of low-contrast pixels: inter-class contrast enhancement (ICE) and boundary contrast enhancement (BCE), enabling models to segment low-contrast pixels among malignant tumors, benign tumors, and normal tissues. Additionally, a confidence-based dynamic filter (CDF) is designed for pseudo-label selection, enhancing the utilization of generated pseudo-labels for unlabeled data with a specific focus on minority classes. Extensive experiments conducted on two public datasets, as well as a large proprietary dataset collected over three years, demonstrate that LoCo achieves state-of-the-art results, significantly outperforming previous methods. The source code of LoCo is available at the URL of \href{https://github.com/AnoK3111/LoCo}{https://github.com/AnoK3111/LoCo}.
Related papers
- CriDiff: Criss-cross Injection Diffusion Framework via Generative Pre-train for Prostate Segmentation [60.61972883059688]
CriDiff is a two-stage feature injecting framework with a Crisscross Injection Strategy (CIS) and a Generative Pre-train (GP) approach for prostate segmentation.
To effectively learn multi-level of edge features and non-edge features, we proposed two parallel conditioners in the CIS.
The GP approach eases the inconsistency between the images features and the diffusion model without adding additional parameters.
arXiv Detail & Related papers (2024-06-20T10:46:50Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
The present work develops comparison experiments between deep learning and multiset neurons approaches.
The deep learning approach confirmed its potential for performing image segmentation.
The alternative multiset methodology allowed for enhanced accuracy while requiring little computational resources.
arXiv Detail & Related papers (2023-07-19T16:42:52Z) - Exploring Weakly Supervised Semantic Segmentation Ensembles for Medical
Imaging Systems [11.693197342734152]
We propose a framework for reliable classification and detection of medical conditions in images.
Our framework achieves that by first utilizing lower threshold CAMs to cover the target object with high certainty.
We have demonstrated an improved dice score of up to 8% on BRATS and 6% on DECATHLON datasets.
arXiv Detail & Related papers (2023-03-14T13:31:05Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
We propose a novel semi-supervised segmentation method named Rectified Contrastive Pseudo Supervision (RCPS)
RCPS combines a rectified pseudo supervision and voxel-level contrastive learning to improve the effectiveness of semi-supervised segmentation.
Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art methods in semi-supervised medical image segmentation.
arXiv Detail & Related papers (2023-01-13T12:03:58Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - IDEAL: Improved DEnse locAL Contrastive Learning for Semi-Supervised
Medical Image Segmentation [3.6748639131154315]
We extend the concept of metric learning to the segmentation task.
We propose a simple convolutional projection head for obtaining dense pixel-level features.
A bidirectional regularization mechanism involving two-stream regularization training is devised for the downstream task.
arXiv Detail & Related papers (2022-10-26T23:11:02Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
We aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels.
We learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images.
We conduct experiments on an MRI and a CT segmentation dataset and demonstrate that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T03:27:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.