論文の概要: Leveraging Ensemble-Based Semi-Supervised Learning for Illicit Account Detection in Ethereum DeFi Transactions
- arxiv url: http://arxiv.org/abs/2412.02408v1
- Date: Tue, 03 Dec 2024 12:03:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:40:45.935618
- Title: Leveraging Ensemble-Based Semi-Supervised Learning for Illicit Account Detection in Ethereum DeFi Transactions
- Title(参考訳): Ethereum DeFiトランザクションにおける不正アカウント検出のためのアンサンブルに基づく半教師付き学習の活用
- Authors: Shabnam Fazliani, Mohammad Mowlavi Sorond, Arsalan Masoudifard,
- Abstract要約: 分散ファイナンス(DeFi)は、不正アカウントの拡散など、重大なセキュリティリスクを導入している。
従来の検出方法は、ラベル付きデータの不足と悪意あるアクターの進化戦略によって制限される。
本稿では,これらの課題に対処するために,自己学習型Illicitアカウント検出フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The advent of smart contracts has enabled the rapid rise of Decentralized Finance (DeFi) on the Ethereum blockchain, offering substantial rewards in financial innovation and inclusivity. However, this growth has also introduced significant security risks, including the proliferation of illicit accounts involved in fraudulent activities. Traditional detection methods are limited by the scarcity of labeled data and the evolving tactics of malicious actors. In this paper, we propose a novel Self-Learning Ensemble-based Illicit account Detection (SLEID) framework to address these challenges. SLEID employs an Isolation Forest for initial outlier detection and a self-training mechanism to iteratively generate pseudo-labels for unlabeled accounts, thereby enhancing detection accuracy. Extensive experiments demonstrate that SLEID significantly outperforms traditional supervised approaches and recent semi-supervised models, achieving superior precision, recall, and F1-scores, particularly in detecting illicit accounts. Compared to state-of-the-art methods, our approach achieves better detection performance while reducing reliance on labeled data. The results affirm SLEID's efficacy as a robust solution for safeguarding the DeFi ecosystem and mitigating risks posed by malicious accounts.
- Abstract(参考訳): スマートコントラクトの出現により、Ethereumブロックチェーン上での分散ファイナンス(DeFi)の急速な増加が実現し、金融イノベーションとインクリビティにおいて大きな報酬が提供されるようになった。
しかし、この成長は不正行為に関わる不正アカウントの急増など、重大なセキュリティリスクも引き起こしている。
従来の検出方法は、ラベル付きデータの不足と悪意あるアクターの進化戦略によって制限される。
本稿では,これらの課題に対処するために,自己学習型Illicitアカウント検出(SLEID)フレームワークを提案する。
SLEIDは、初期異常検出にアイソレーションフォレストと、未ラベルアカウントの擬似ラベルを反復的に生成する自己学習機構を用いて、検出精度を向上する。
大規模な実験により、SLEIDは従来の教師付きアプローチや最近の半教師付きモデルよりも大幅に優れており、特に不正アカウントの検出において優れた精度、リコール、F1スコアを実現している。
提案手法は最先端手法と比較して,ラベル付きデータへの依存を低減しつつ,より優れた検出性能を実現する。
結果は、SLEIDがDeFiエコシステムの保護と悪意のあるアカウントによるリスク軽減のための堅牢なソリューションとして有効であることを確認した。
関連論文リスト
- A Label-Free Heterophily-Guided Approach for Unsupervised Graph Fraud Detection [60.09453163562244]
本稿では,非教師付きGFDのための非教師付きグラフ不正検出手法(HUGE)を提案する。
推定モジュールでは、GFD の臨界グラフ特性をキャプチャする HALO と呼ばれる新しいラベルフリーなヘテロフィリー計量を設計する。
アライメントに基づく不正検出モジュールにおいて、ランキング損失と非対称アライメント損失を有する合同GNNアーキテクチャを開発する。
論文 参考訳(メタデータ) (2025-02-18T22:07:36Z) - Hide in Plain Sight: Clean-Label Backdoor for Auditing Membership Inference [16.893873979953593]
本研究では,ステルスデータ監査のための新しいクリーンラベルバックドア方式を提案する。
我々のアプローチでは、ターゲットモデルの振る舞いを模倣するシャドウモデルによって生成される最適なトリガを用いる。
提案手法は,ブラックボックスアクセスによるロバストなデータ監査を可能にし,多様なデータセット間で高い攻撃成功率を達成する。
論文 参考訳(メタデータ) (2024-11-24T20:56:18Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
本稿では,ラベルフリップ攻撃に対して,FL(Federated Learning)システムを構築するための高度なアプローチを提案する。
本稿では,適応的しきい値設定機構と統合されたコンセンサスに基づく検証プロセスを提案する。
以上の結果から,FLシステムのレジリエンスを高め,ラベルフリップ攻撃の顕著な緩和効果が示唆された。
論文 参考訳(メタデータ) (2024-03-05T20:54:56Z) - Enhancing Credit Card Fraud Detection A Neural Network and SMOTE Integrated Approach [4.341096233663623]
本研究では、ニューラルネットワーク(NN)とSMOTE(Synthet ic Minority Over-Sampling Technique)を組み合わせて検出性能を向上させる革新的な手法を提案する。
この研究は、クレジットカード取引データに固有の不均衡に対処し、堅牢で正確な不正検出のための技術的進歩に焦点を当てた。
論文 参考訳(メタデータ) (2024-02-27T02:26:04Z) - Securing Transactions: A Hybrid Dependable Ensemble Machine Learning
Model using IHT-LR and Grid Search [2.4374097382908477]
本稿では,複数のアルゴリズムをインテリジェントに組み合わせて不正識別を強化する,最先端のハイブリッドアンサンブル(ENS)機械学習(ML)モデルを提案する。
実験は,284,807件の取引からなる公開クレジットカードデータセットを用いて実施した。
提案したモデルは、99.66%、99.73%、98.56%、99.79%の精度で、それぞれDT、RF、KNN、ENSモデルに完全100%の精度を実現している。
論文 参考訳(メタデータ) (2024-02-22T09:01:42Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNは、クエリ許可を通じてターゲットモデルを複製するための悪行であるモデル盗難攻撃に対して脆弱である。
異なるシナリオに対応するために,3つのモデルステルス攻撃を導入する。
論文 参考訳(メタデータ) (2023-12-18T05:42:31Z) - Exploiting Low-confidence Pseudo-labels for Source-free Object Detection [54.98300313452037]
Source-free Object Detection (SFOD) は、ラベル付きソースデータにアクセスすることなく、未ラベルのターゲットドメインにソーストレーニングされた検出器を適応することを目的としている。
現在のSFOD法は適応相におけるしきい値に基づく擬似ラベル手法を用いる。
疑似ラベルを最大限に活用するために,高信頼度と低信頼度しきい値を導入する手法を提案する。
論文 参考訳(メタデータ) (2023-10-19T12:59:55Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z) - Towards Credit-Fraud Detection via Sparsely Varying Gaussian
Approximations [0.0]
本稿では,この予測システムに不確実性を取り入れたクレジットカード不正検出手法を提案する。
異なるカーネルセットと異なるインジェクションデータポイントで同じ動作を行い、最適な精度が得られた。
論文 参考訳(メタデータ) (2020-07-14T16:56:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。