論文の概要: Demonstration of a Photonic Time-Multiplexed C-NOT Gate
- arxiv url: http://arxiv.org/abs/2412.02478v1
- Date: Tue, 03 Dec 2024 14:41:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:41:58.763060
- Title: Demonstration of a Photonic Time-Multiplexed C-NOT Gate
- Title(参考訳): フォトニック時間多重C-NOTゲートの実証
- Authors: Federico Pegoraro, Philip Held, Jonas Lammers, Benjamin Brecht, Christine Silberhorn,
- Abstract要約: 2ビット制御ノット(C-NOT)ゲートは、ゲートベースの量子コンピュータを構築する上で不可欠な要素である。
ここでは、完全に再構成可能なアーキテクチャを構築するために、スケーラブルな時間多重化アプローチを採用しています。
実験プラットフォームを使って4つのベル状態を生成する。
- 参考スコア(独自算出の注目度): 0.5825410941577593
- License:
- Abstract: The two-qubit controlled-not (C-NOT) gate is an essential component in the construction of a gate-based quantum computer. In fact, its operation, combined with single qubit rotations allows to realise any quantum circuit. Several strategies have been adopted in order to build quantum gates, among them the photonic one offers the dual advantage of excellent isolation from the external environment and ease of manipulation at the single qubit level. Here we adopt a scalable time-multiplexed approach in order to build a fully reconfigurable architecture capable of implementing a post-selected interferometric scheme that implements the C-NOT operation with a fidelity of $(93.8\pm1.4)\%$. We use our experimental platform to generate the four Bell states.
- Abstract(参考訳): 2ビット制御ノット(C-NOT)ゲートは、ゲートベースの量子コンピュータを構築する上で欠かせない要素である。
実際、単一の量子ビット回転と組み合わせることで、任意の量子回路を実現することができる。
量子ゲートを構築するためのいくつかの戦略が採用されているが、その中でもフォトニックは、外部環境からの優れた隔離と単一量子ビットレベルでの操作の容易さという2つの利点を提供している。
ここでは、C-NOT演算を(93.8\pm1.4)\%$で実装した、完全な再構成可能なアーキテクチャを構築するために、スケーラブルな時間多重化アプローチを採用する。
実験プラットフォームを使って4つのベル状態を生成する。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - One Gate Scheme to Rule Them All: Introducing a Complex Yet Reduced Instruction Set for Quantum Computing [8.478982715648547]
$XX+YY$結合を持つキュービットのスキームは、単一キュービットゲートまでの任意の2キュービットゲートを実現する。
一般的な$n$-qubitゲート合成、量子ボリューム、キュービットルーティングなど、様々な応用において顕著な改善が見られた。
論文 参考訳(メタデータ) (2023-12-09T19:30:31Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
我々は,Rydberg tweezerシステムにおける2ビットゲートの機械学習支援設計を実演する。
我々は,高忠実度CNOTゲートを実装した最適パルス列を生成する。
単一量子ビット演算の局所的な制御は、原子列上で量子計算を行うのに十分であることを示す。
論文 参考訳(メタデータ) (2023-06-14T18:24:51Z) - All-optical quantum computing using cubic phase gates [0.0]
我々は、全光学的、普遍的、フォールトトレラントな量子計算の要素をどのように実装できるかを示す。
本手法は, 正確なゲート分解と近似トロッタライゼーションを組み合わせた分解法に基づく。
論文 参考訳(メタデータ) (2022-11-16T17:21:30Z) - Optical realization of one-dimensional generalized split-step quantum
walks [1.7396274240172125]
スプリットステップ量子ウォークとして知られる離散時間量子ウォークの変種は、ディラックセルオートマトンやトポロジカル絶縁体と密接に関連している。
位置依存型コイン(PDC)操作と組み合わせることで、一般化されたスプリットステップウォークのテーブルトップ設定を実現できるスプリットステップ演算子の光学的セットアップを提供する。
論文 参考訳(メタデータ) (2022-07-25T16:57:56Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
回路量子力学(cQED)システムにおける格子$Phi4$理論の量子アルゴリズムの実装について論じる。
quditシステムの主な利点は、そのマルチレベル特性により、対角的な単一量子ゲートでしかフィールドの相互作用を実装できないことである。
論文 参考訳(メタデータ) (2021-08-30T16:30:33Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
本稿では,最適化問題における短期量子優位性の提案に着想を得た高忠実度ゲートセットを提案する。
3つのトランペット四重項のコヒーレントな多レベル制御を編成することにより、自然な3量子ビット計算ベースで作用する決定論的連続角量子位相ゲートの族を合成する。
論文 参考訳(メタデータ) (2021-08-03T17:49:09Z) - Location qubits in a multi-quantum-dot system [0.0]
我々は、新しい位置量子ビットを導入し、全光量子ゲートの普遍的なセットを構築する方法を説明し、現実的な構造におけるそれらの性能をシミュレートする。
その結果, 位置量子ビットは単一キュービット演算時間よりも5桁長いコヒーレンスを維持でき, 単一キュービットゲート誤差は0.01%を超えないことがわかった。
論文 参考訳(メタデータ) (2021-07-13T10:00:16Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
単一量子ビット位相シフト量子ゲートの超高速制御問題を考える。
大域的最適制御は、最大忠実度でゲートを実現する制御である。
Trapは、ローカルにのみ最適だが、グローバルにはないコントロールである。
論文 参考訳(メタデータ) (2021-04-26T16:38:43Z) - Efficient, stabilized two-qubit gates on a trapped-ion quantum computer [4.547776040126478]
イオン鎖を閉じ込めた一対のイオン上にゲートを絡めるための最適なパルスを構築するための2つの方法を提案する。
これらのトレードオフを、捕捉されたイオン量子コンピュータ上で説明します。
論文 参考訳(メタデータ) (2021-01-19T22:40:28Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。