MERGE: Multi-faceted Hierarchical Graph-based GNN for Gene Expression Prediction from Whole Slide Histopathology Images
- URL: http://arxiv.org/abs/2412.02601v1
- Date: Tue, 03 Dec 2024 17:32:05 GMT
- Title: MERGE: Multi-faceted Hierarchical Graph-based GNN for Gene Expression Prediction from Whole Slide Histopathology Images
- Authors: Aniruddha Ganguly, Debolina Chatterjee, Wentao Huang, Jie Zhang, Alisa Yurovsky, Travis Steele Johnson, Chao Chen,
- Abstract summary: We introduce MERGE (Multi-faceted hiErarchical gRaph for Gene Expressions), which combines a hierarchical graph construction strategy with graph neural networks (GNN) to improve gene expression predictions from whole slide images.
By clustering tissue image patches based on both spatial and morphological features, our approach fosters interactions between distant tissue locations during GNN learning.
As an additional contribution, we evaluate different data smoothing techniques that are necessary to mitigate artifacts in ST data, often caused by technical imperfections.
- Score: 6.717786190771243
- License:
- Abstract: Recent advances in Spatial Transcriptomics (ST) pair histology images with spatially resolved gene expression profiles, enabling predictions of gene expression across different tissue locations based on image patches. This opens up new possibilities for enhancing whole slide image (WSI) prediction tasks with localized gene expression. However, existing methods fail to fully leverage the interactions between different tissue locations, which are crucial for accurate joint prediction. To address this, we introduce MERGE (Multi-faceted hiErarchical gRaph for Gene Expressions), which combines a multi-faceted hierarchical graph construction strategy with graph neural networks (GNN) to improve gene expression predictions from WSIs. By clustering tissue image patches based on both spatial and morphological features, and incorporating intra- and inter-cluster edges, our approach fosters interactions between distant tissue locations during GNN learning. As an additional contribution, we evaluate different data smoothing techniques that are necessary to mitigate artifacts in ST data, often caused by technical imperfections. We advocate for adopting gene-aware smoothing methods that are more biologically justified. Experimental results on gene expression prediction show that our GNN method outperforms state-of-the-art techniques across multiple metrics.
Related papers
- RankByGene: Gene-Guided Histopathology Representation Learning Through Cross-Modal Ranking Consistency [11.813883157319381]
We propose a novel framework that aligns gene and image features using a ranking-based alignment loss.
To further enhance the alignment's stability, we employ self-supervised knowledge distillation with a teacher-student network architecture.
arXiv Detail & Related papers (2024-11-22T17:08:28Z) - Multimodal contrastive learning for spatial gene expression prediction using histology images [13.47034080678041]
We propose textbfmclSTExp, a multimodal contrastive learning with Transformer and Densenet-121 encoder for Spatial Transcriptomics Expression prediction.
textbfmclSTExp has superior performance in predicting spatial gene expression.
It has shown promise in interpreting cancer-specific overexpressed genes, elucidating immune-related genes, and identifying specialized spatial domains annotated by pathologists.
arXiv Detail & Related papers (2024-07-11T06:33:38Z) - Spatially Resolved Gene Expression Prediction from Histology via Multi-view Graph Contrastive Learning with HSIC-bottleneck Regularization [18.554968935341236]
We propose a Multi-view Graph Contrastive Learning framework with HSIC-bottleneck Regularization(ST-GCHB) to help impute the gene expression of the queried imagingspots by considering their spatial dependency.
arXiv Detail & Related papers (2024-06-18T03:07:25Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - SEPAL: Spatial Gene Expression Prediction from Local Graphs [1.4523812806185954]
We present SEPAL, a new model for predicting genetic profiles from visual tissue appearance.
Our method exploits the biological biases of the problem by directly supervising relative differences with respect to mean expression.
We propose a novel benchmark that aims to better define the task by following current best practices in transcriptomics.
arXiv Detail & Related papers (2023-09-02T23:24:02Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
We propose a novel graph-based framework to leverage the inter-relationships among different types of nuclei for WSI analysis.
Specifically, we formulate the WSI as a heterogeneous graph with "nucleus-type" attribute to each node and a semantic attribute similarity to each edge.
Our framework outperforms the state-of-the-art methods with considerable margins on various tasks.
arXiv Detail & Related papers (2023-07-09T14:43:40Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - All You Need is Color: Image based Spatial Gene Expression Prediction
using Neural Stain Learning [11.9045433112067]
We propose a "stain-aware" machine learning approach for prediction of spatial transcriptomic gene expression profiles.
We have found that the gene expression predictions from the proposed approach show higher correlations with true expression values obtained through sequencing.
arXiv Detail & Related papers (2021-08-23T23:43:38Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.