Causally Constrained Data Synthesis for Private Data Release
- URL: http://arxiv.org/abs/2105.13144v1
- Date: Thu, 27 May 2021 13:46:57 GMT
- Title: Causally Constrained Data Synthesis for Private Data Release
- Authors: Varun Chandrasekaran, Darren Edge, Somesh Jha, Amit Sharma, Cheng
Zhang, Shruti Tople
- Abstract summary: Using synthetic data which reflects certain statistical properties of the original data preserves the privacy of the original data.
Prior works utilize differentially private data release mechanisms to provide formal privacy guarantees.
We propose incorporating causal information into the training process to favorably modify the aforementioned trade-off.
- Score: 36.80484740314504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Making evidence based decisions requires data. However for real-world
applications, the privacy of data is critical. Using synthetic data which
reflects certain statistical properties of the original data preserves the
privacy of the original data. To this end, prior works utilize differentially
private data release mechanisms to provide formal privacy guarantees. However,
such mechanisms have unacceptable privacy vs. utility trade-offs. We propose
incorporating causal information into the training process to favorably modify
the aforementioned trade-off. We theoretically prove that generative models
trained with additional causal knowledge provide stronger differential privacy
guarantees. Empirically, we evaluate our solution comparing different models
based on variational auto-encoders (VAEs), and show that causal information
improves resilience to membership inference, with improvements in downstream
utility.
Related papers
- FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
Data-dependent privacy accounting frameworks such as per-instance differential privacy (pDP) and Fisher information loss (FIL) confer fine-grained privacy guarantees for individuals in a fixed training dataset.
We propose simple modifications of the Gaussian mechanism with bounded support, showing that they amplify privacy guarantees under data-dependent accounting.
arXiv Detail & Related papers (2024-03-07T21:22:07Z) - $\alpha$-Mutual Information: A Tunable Privacy Measure for Privacy
Protection in Data Sharing [4.475091558538915]
This paper adopts Arimoto's $alpha$-Mutual Information as a tunable privacy measure.
We formulate a general distortion-based mechanism that manipulates the original data to offer privacy protection.
arXiv Detail & Related papers (2023-10-27T16:26:14Z) - Conditional Density Estimations from Privacy-Protected Data [0.0]
We propose simulation-based inference methods from privacy-protected datasets.
We illustrate our methods on discrete time-series data under an infectious disease model and with ordinary linear regression models.
arXiv Detail & Related papers (2023-10-19T14:34:17Z) - Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving
Training Data Release for Machine Learning [3.29354893777827]
We introduce a data release framework, 3A (Approximate, Adapt, Anonymize), to maximize data utility for machine learning.
We present experimental evidence showing minimal discrepancy between performance metrics of models trained on real versus privatized datasets.
arXiv Detail & Related papers (2023-07-04T18:37:11Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - No Free Lunch in "Privacy for Free: How does Dataset Condensation Help
Privacy" [75.98836424725437]
New methods designed to preserve data privacy require careful scrutiny.
Failure to preserve privacy is hard to detect, and yet can lead to catastrophic results when a system implementing a privacy-preserving'' method is attacked.
arXiv Detail & Related papers (2022-09-29T17:50:23Z) - Post-processing of Differentially Private Data: A Fairness Perspective [53.29035917495491]
This paper shows that post-processing causes disparate impacts on individuals or groups.
It analyzes two critical settings: the release of differentially private datasets and the use of such private datasets for downstream decisions.
It proposes a novel post-processing mechanism that is (approximately) optimal under different fairness metrics.
arXiv Detail & Related papers (2022-01-24T02:45:03Z) - PEARL: Data Synthesis via Private Embeddings and Adversarial
Reconstruction Learning [1.8692254863855962]
We propose a new framework of data using deep generative models in a differentially private manner.
Within our framework, sensitive data are sanitized with rigorous privacy guarantees in a one-shot fashion.
Our proposal has theoretical guarantees of performance, and empirical evaluations on multiple datasets show that our approach outperforms other methods at reasonable levels of privacy.
arXiv Detail & Related papers (2021-06-08T18:00:01Z) - Data-driven Regularized Inference Privacy [33.71757542373714]
We propose a data-driven inference privacy preserving framework to sanitize data.
We develop an inference privacy framework based on the variational method.
We present empirical methods to estimate the privacy metric.
arXiv Detail & Related papers (2020-10-10T08:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.