論文の概要: Medical Multimodal Foundation Models in Clinical Diagnosis and Treatment: Applications, Challenges, and Future Directions
- arxiv url: http://arxiv.org/abs/2412.02621v1
- Date: Tue, 03 Dec 2024 17:50:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:48:47.514246
- Title: Medical Multimodal Foundation Models in Clinical Diagnosis and Treatment: Applications, Challenges, and Future Directions
- Title(参考訳): 臨床診断・治療における医用マルチモーダルファンデーションモデル:応用,課題,今後の方向性
- Authors: Kai Sun, Siyan Xue, Fuchun Sun, Haoran Sun, Yu Luo, Ling Wang, Siyuan Wang, Na Guo, Lei Liu, Tian Zhao, Xinzhou Wang, Lei Yang, Shuo Jin, Jun Yan, Jiahong Dong,
- Abstract要約: 近年の深層学習の進歩は臨床診断と治療の分野に革命をもたらした。
医療マルチモーダル・ファンデーション・モデル (MMFM) は幅広い臨床業務に適応している。
- 参考スコア(独自算出の注目度): 32.23790363311414
- License:
- Abstract: Recent advancements in deep learning have significantly revolutionized the field of clinical diagnosis and treatment, offering novel approaches to improve diagnostic precision and treatment efficacy across diverse clinical domains, thus driving the pursuit of precision medicine. The growing availability of multi-organ and multimodal datasets has accelerated the development of large-scale Medical Multimodal Foundation Models (MMFMs). These models, known for their strong generalization capabilities and rich representational power, are increasingly being adapted to address a wide range of clinical tasks, from early diagnosis to personalized treatment strategies. This review offers a comprehensive analysis of recent developments in MMFMs, focusing on three key aspects: datasets, model architectures, and clinical applications. We also explore the challenges and opportunities in optimizing multimodal representations and discuss how these advancements are shaping the future of healthcare by enabling improved patient outcomes and more efficient clinical workflows.
- Abstract(参考訳): 近年の深層学習の進歩は、臨床診断と治療の分野を大きく革新させ、様々な臨床領域における診断精度と治療効果を改善する新しいアプローチを提供し、精度医学の追求を促している。
大規模医療マルチモーダルファンデーションモデル (MMFM) の開発を加速させるため, マルチオーガナイズドデータセットとマルチモーダルデータセットの利用可能化が進んでいる。
これらのモデルは、強力な一般化能力と豊かな表現力で知られており、早期診断からパーソナライズされた治療戦略に至るまで、幅広い臨床課題に適応している。
本稿では,MMFMの最近の展開を包括的に分析し,データセット,モデルアーキテクチャ,臨床応用の3つの重要な側面に注目した。
また、マルチモーダル表現を最適化する上での課題や機会についても検討し、これらの進歩が患者の成果を改善し、より効率的な臨床ワークフローを実現することで、医療の未来をどう形成しているかについて議論する。
関連論文リスト
- Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
がん予後は、患者の予後と生存率を予測する重要なタスクである。
これまでの研究では、臨床ノート、医療画像、ゲノムデータなどの多様なデータモダリティを統合し、補完的な情報を活用している。
既存のアプローチには2つの大きな制限がある。まず、各病院の患者記録など、各種のトレーニングに新しく到着したデータを組み込むことに苦慮する。
第二に、ほとんどのマルチモーダル統合手法は単純化された結合やタスク固有のパイプラインに依存しており、モダリティ間の複雑な相互依存を捉えることができない。
論文 参考訳(メタデータ) (2025-01-30T06:49:57Z) - Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
臨床ワークフローの5つの重要な段階をカバーする12,163の臨床症例のデータセットであるMedChainを提示する。
フィードバック機構とMCase-RAGモジュールを統合したAIシステムであるMedChain-Agentも提案する。
論文 参考訳(メタデータ) (2024-12-02T15:25:02Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
大規模言語モデル(LLM)の創薬・開発分野への統合は、重要なパラダイムシフトである。
これらの先進的な計算モデルが、ターゲット・ディスリーズ・リンクを明らかにし、複雑なバイオメディカルデータを解釈し、薬物分子設計を強化し、薬物の有効性と安全性を予測し、臨床治験プロセスを促進する方法について検討する。
論文 参考訳(メタデータ) (2024-09-06T02:03:38Z) - Pathology Foundation Models [0.0354287905099182]
深層学習技術の発達は、病理AI(Artificial Intelligence)の広範な研究と発展に繋がった
Foundation Models (FM)として知られる大規模なAIモデルが登場し、医療分野のアプリケーション範囲を拡大した。
FMは従来のAIよりも正確で幅広いタスクに適用できる。
論文 参考訳(メタデータ) (2024-07-31T03:58:48Z) - Foundational Models for Pathology and Endoscopy Images: Application for Gastric Inflammation [0.0]
ファンデーションモデル(FM)は、多様なデータに基づいて訓練され、幅広いユースケースに適用できる機械学習モデルまたはディープラーニングモデルである。
FMは内視鏡とそれに続く病理画像解析の精度を高めるための有望なソリューションを提供する。
本総説は,FMを臨床実践に組み込むことの複雑さをナビゲートする上で,研究者や実践者にとってのロードマップを提供することを目的としている。
論文 参考訳(メタデータ) (2024-06-26T10:51:44Z) - A Survey on Medical Large Language Models: Technology, Application, Trustworthiness, and Future Directions [23.36640449085249]
医学大言語モデル(Med-LLMs)の最近の進歩を辿る。
The wide-ranging application of Med-LLMs are investigated across various health domain。
公平性、説明責任、プライバシー、堅牢性を保証する上での課題について議論する。
論文 参考訳(メタデータ) (2024-06-06T03:15:13Z) - A Spectrum Evaluation Benchmark for Medical Multi-Modal Large Language Models [57.88111980149541]
Asclepiusは、Med-MLLMの異なる医学的特長と診断能力で評価する、新しいMed-MLLMベンチマークである。
3つの基本原則に基づいて、アスクレピウスは15の医療専門分野を包括的に評価する。
また、6つのMed-MLLMの詳細な分析を行い、3人の専門家と比較した。
論文 参考訳(メタデータ) (2024-02-17T08:04:23Z) - Multimodal Machine Learning in Image-Based and Clinical Biomedicine:
Survey and Prospects [2.1070612998322438]
本稿では,臨床予測のためのマルチモーダルモデルの変換可能性について検討する。
進歩にもかかわらず、多くの生物医学領域におけるデータバイアスや「ビッグデータ」の不足といった課題が続いている。
論文 参考訳(メタデータ) (2023-11-04T05:42:51Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
本稿では,マルチモーダル入力を統一的に処理する臨床診断支援として,トランスフォーマーを用いた表現学習モデルについて報告する。
統一モデルは, 肺疾患の同定において, 画像のみのモデル, 非統一型マルチモーダル診断モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-01T16:23:47Z) - Deep Multi-modal Fusion of Image and Non-image Data in Disease Diagnosis
and Prognosis: A Review [8.014632186417423]
医療における診断技術の急速な発展は、医師が日常的に発生する異質で相補的なデータを扱い、統合することの要求が高まっている。
近年のマルチモーダルディープラーニング技術の発展に伴い、我々はどのようにして多モーダル情報を抽出して集約し、究極的にはより客観的で定量的なコンピュータ支援の臨床的意思決定を提供するかという重要な疑問に、ますます多くの努力が注がれている。
本総説では,(1)現在のマルチモーダル・ラーニングの概要,(2)マルチモーダル・フュージョン法の要約,(3)パフォーマンスの議論,(4)疾患診断と予後の応用,(5)課題と将来について概説する。
論文 参考訳(メタデータ) (2022-03-25T18:50:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。