論文の概要: Empowering Medical Multi-Agents with Clinical Consultation Flow for Dynamic Diagnosis
- arxiv url: http://arxiv.org/abs/2503.16547v1
- Date: Wed, 19 Mar 2025 08:47:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:55:54.620169
- Title: Empowering Medical Multi-Agents with Clinical Consultation Flow for Dynamic Diagnosis
- Title(参考訳): ダイナミック診断のための臨床相談フローを取り入れた医療用マルチエージェントの開発
- Authors: Sihan Wang, Suiyang Jiang, Yibo Gao, Boming Wang, Shangqi Gao, Xiahai Zhuang,
- Abstract要約: コンサルテーションプロセス全体をシミュレートするために,コンサルテーションフローと強化学習(RL)にインスパイアされたマルチエージェントフレームワークを提案する。
本手法は,臨床相談フローと医用教科書から構築した階層的行動集合を取り入れ,意思決定過程を効果的に指導する。
この戦略はエージェントのインタラクションを改善し、動的状態に基づいたアクションの適応と最適化を可能にする。
- 参考スコア(独自算出の注目度): 20.59719567178192
- License:
- Abstract: Traditional AI-based healthcare systems often rely on single-modal data, limiting diagnostic accuracy due to incomplete information. However, recent advancements in foundation models show promising potential for enhancing diagnosis combining multi-modal information. While these models excel in static tasks, they struggle with dynamic diagnosis, failing to manage multi-turn interactions and often making premature diagnostic decisions due to insufficient persistence in information collection.To address this, we propose a multi-agent framework inspired by consultation flow and reinforcement learning (RL) to simulate the entire consultation process, integrating multiple clinical information for effective diagnosis. Our approach incorporates a hierarchical action set, structured from clinic consultation flow and medical textbook, to effectively guide the decision-making process. This strategy improves agent interactions, enabling them to adapt and optimize actions based on the dynamic state. We evaluated our framework on a public dynamic diagnosis benchmark. The proposed framework evidentially improves the baseline methods and achieves state-of-the-art performance compared to existing foundation model-based methods.
- Abstract(参考訳): 従来のAIベースの医療システムは単一のモーダルデータに依存しており、不完全な情報による診断精度を制限している。
しかし,近年の基盤モデルの進歩は,マルチモーダル情報を組み合わせた診断の強化に有望な可能性を示唆している。
これらのモデルは静的なタスクにおいて優れているが,動的診断に苦慮し,多ターンインタラクションの管理に支障をきたし,情報収集の持続性に乏しいため早期診断を行うことが多いため,コンサルテーションフローと強化学習(RL)にインスパイアされたマルチエージェントフレームワークを提案する。
本手法は,臨床相談フローと医用教科書から構築した階層的行動集合を取り入れ,意思決定プロセスを効果的に指導する。
この戦略はエージェントのインタラクションを改善し、動的状態に基づいたアクションの適応と最適化を可能にする。
パブリックな動的診断ベンチマークを用いて、我々のフレームワークを評価した。
提案フレームワークは,既存の基礎モデルに基づく手法と比較して,明らかにベースライン手法を改良し,最先端のパフォーマンスを実現する。
関連論文リスト
- Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
がん予後は、患者の予後と生存率を予測する重要なタスクである。
これまでの研究では、臨床ノート、医療画像、ゲノムデータなどの多様なデータモダリティを統合し、補完的な情報を活用している。
既存のアプローチには2つの大きな制限がある。まず、各病院の患者記録など、各種のトレーニングに新しく到着したデータを組み込むことに苦慮する。
第二に、ほとんどのマルチモーダル統合手法は単純化された結合やタスク固有のパイプラインに依存しており、モダリティ間の複雑な相互依存を捉えることができない。
論文 参考訳(メタデータ) (2025-01-30T06:49:57Z) - Medical Multimodal Foundation Models in Clinical Diagnosis and Treatment: Applications, Challenges, and Future Directions [32.23790363311414]
近年の深層学習の進歩は臨床診断と治療の分野に革命をもたらした。
医療マルチモーダル・ファンデーション・モデル (MMFM) は幅広い臨床業務に適応している。
論文 参考訳(メタデータ) (2024-12-03T17:50:19Z) - Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
臨床ワークフローの5つの重要な段階をカバーする12,163の臨床症例のデータセットであるMedChainを提示する。
フィードバック機構とMCase-RAGモジュールを統合したAIシステムであるMedChain-Agentも提案する。
論文 参考訳(メタデータ) (2024-12-02T15:25:02Z) - MvKeTR: Chest CT Report Generation with Multi-View Perception and Knowledge Enhancement [1.4680538148112467]
マルチビュー認識知識強化トランス(MvKeTR)
複数の解剖学的視点から診断情報を効果的に合成する。
Cross-Modal Knowledge Enhancer (CMKE) はクエリボリュームに基づいて最もよく似たレポートを検索する。
論文 参考訳(メタデータ) (2024-11-27T12:58:23Z) - MoRE: Multi-Modal Contrastive Pre-training with Transformers on X-Rays, ECGs, and Diagnostic Report [4.340464264725625]
我々は,X線,心電図(ECG),放射線学・心臓医学報告を相乗的に組み合わせた,新しいマルチモーダルコントラスト事前学習フレームワークを提案する。
我々はLoRA-Peftを用いて、LLMにおけるトレーニング可能なパラメータを著しく削減し、視覚変換器(ViT)に最近の線形アテンション降下戦略を取り入れ、よりスムーズなアテンションを実現する。
我々の知る限り、我々はX線、心電図、放射線学・医学レポートをこの手法と組み合わせた統合モデルを提案している。
論文 参考訳(メタデータ) (2024-10-21T17:42:41Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Beyond Direct Diagnosis: LLM-based Multi-Specialist Agent Consultation
for Automatic Diagnosis [30.943705201552643]
本研究では,潜在的な疾患に対するエージェントの確率分布を適応的に融合させることにより,現実世界の診断過程をモデル化する枠組みを提案する。
提案手法では,パラメータ更新とトレーニング時間を大幅に短縮し,効率と実用性を向上する。
論文 参考訳(メタデータ) (2024-01-29T12:25:30Z) - OpenClinicalAI: An Open and Dynamic Model for Alzheimer's Disease
Diagnosis [11.775648630734949]
アルツハイマー病(AD)は逆転や治癒はできないが、タイムリーな診断は治療やケアの負担を大幅に軽減することができる。
AD診断モデルに関する現在の研究は、診断タスクを典型的な分類タスクと見なしている。
複雑で不確実な臨床環境下での直接AD診断のためのOpenClinicalAIを提案する。
論文 参考訳(メタデータ) (2023-07-03T12:35:03Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
本稿では,マルチモーダル入力を統一的に処理する臨床診断支援として,トランスフォーマーを用いた表現学習モデルについて報告する。
統一モデルは, 肺疾患の同定において, 画像のみのモデル, 非統一型マルチモーダル診断モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-01T16:23:47Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - Hierarchical Reinforcement Learning for Automatic Disease Diagnosis [52.111516253474285]
政策学習のための対話システムに2段階の階層的な政策構造を統合することを提案する。
提案した政策構造は,多くの疾患や症状を含む診断問題に対処することができる。
論文 参考訳(メタデータ) (2020-04-29T15:02:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。